TU

Grazm

Matjaz Gustin, BSc

CAN Bus Security Protocol:
lightweight message confidentiality, authentication, and

freshness on an automotive bus

MASTER’S THESIS
to achieve the university degree of
Master of Science (Diplom-Ingenieur)

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor
Marcel Carsten Baunach, Univ.-Prof. Dipl.-Inf. Univ. Dr.rer.nat

Institute of Technical Informatics (ITT)
8010 Graz, Inffeldgasse 16/1

Graz, 23 May 2022

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date, Signature

Abstract

In this work the CAN Bus Security (CBS) protocol is presented. This protocol cryptogra-
phically secures the communication between microcontrollers connected via a CAN FD
bus, providing protection against sniffing, spoofing and replay attacks. This work focuses
mostly on the automotive sector, as it is the origin of the CAN bus. CBS offers a
simple and centralised client-server architecture based solely on symmetric cryptographic
primitives, inspired by the Kerberos protocol. This allows a fast communication start-up
and a simple reconfiguration or replacement of clients, e.g., in case of hardware failures.

The proposed solution includes a complete formal specification of the new protocol, the
reference software implementation Hazelnet, its dependency the LibAscon cryptographic
library, and the Hazelnet Demo Platform. The latter uses several microcontrollers to
demonstrate the secure exchange of messages using CBS.

The motivations and rationales behind the protocol design and software implementation
choices are explained within this document; overviews of the architecture and structure
of the protocol and software are also provided.

Kurzfassung

In dieser Arbeit wird das CAN Bus Security (CBS) Protokoll vorgestellt. Dieses Pro-
tokoll schiitzt die Kommunikation zwischen Mikrokontrollern welche iiber einen CAN FD
Bus verbunden sind kryptografisch, und bietet somit Sicherheit vor Sniffing, Spoofing
oder Replay Attacken. Diese Arbeit fokussiert sich auf den Automotive Sektor, da dort
der Ursprung des CAN Buses liegt. CBS bietet eine einfache und zentralisierte Client-
Server Architektur, welche ausschlieSlich auf symmetrischer Kryptografie beruht und
vom Kerberos Protokoll inspiriert wurde. Das erlaubt eine schnelle Kommunikation-
saufnahme sowie eine einfache Rekonfigurierung oder einen einfachen Austausch von
Clients, z.B. im Falle eines Hardware Defekts.

Die vorgeschlagene Losung beinhaltet eine vollstandige formale Spezifizierung des neuen
Protokolls, die Referenzimplementierung Hazelnet sowie die LibAscon Kryptografie Bib-
liothek. Die gemeinsame Nutzung dieser Komponenten wird in einem Anwendungs-
beispiel, der Hazelnet Demo Platform demonstriert. Diese Demo zeigt wie mehrere
Mikrokontrollern mit dem CBS Protokoll sicher Nachrichten austauschen kénnen.

Weiter beschreibt diese Arbeit auch die Grinde und Motivationen fur die verschiedenen
Protokoll sowie Software Designentscheidungen; auch ein Uberblick iiber die Architektur
und Struktur des Protokolls und der Software ist enthalten.

Acknowledgements

This thesis was done in collaboration with NXP Semiconductors Austria GmbH & Co
KG, which kindly allowed me to work part-time while completing my master studies.

My sincere gratitude goes to my significant other Sara, for her unbelievable patience,
support, and continuous encouragement through my years of study. Hvala ti.

I would like to thank my family, my manager, and my System Team colleagues for their
help, support, flexibility, and simply for listening.

I am grateful to my thesis advisor, Univ.-Prof. Marcel Carsten Baunach, for assisting
me in this work and for his patience.

Finally, an important thank you goes to my therapist without whom I would not have
reached this point.

This work is licensed under a @ @
Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/

Contents

List of Acronyms and Symbols

1

Introduction to the CAN bus

1.1

1.2

1.3

The CANbus

1.1.1 The physical layer: differential signalling
1.1.2 The data-link layer: the CAN frame
Faster and longer SDUs with CANFD

1.2.1 The CAN FD frame . . .

Fragmentation and reassembly

1.3.1 The standard solution with ISO-TP
1.3.2 Custom-tailored transport protocols

Bus security and threat model

2.1

2.2 Not included in the threat model

The proposed solution: CBS protocol

3.1
3.2

Threat model

2.1.1 Primary threat: sniffing, spoofing, replaying messages

2.1.2 Secondary threat: untrusted co-hosted applications
2.1.3 Rationale for the selected threats

CBS requirements, briefly
The protocol specification

3.3 The protocol reference software implementation

Protocol specification design choices

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Multicast communication
Arbitrary power cycles
Fast handshake ramp-up
Low-performance devices
Device replacement
Bus arbitration

Message logging and debugging encrypted content

Optional message fragmentation

15

19
19
20
21
23
23
23
24
24

27
27
27
28
29
29

31
31
32
33

35
35
36
36
37
38
39
41
41

11

4.9 Authenticated-only messages

4.10 Message length and MAC length
4.11 Motivation for choosing the Ascon cipher
5 Software implementation design choices
5.1 Design and development cycles L.
5.2 Why making a reference implementation?
5.3 Hazelnet library L
5.3.1 Hazelnet library requirements
5.3.2 Hazelnet library architecture
5.3.3 Hazelnet limitations
5.4 LibAscon library
5.4.1 Why not using the reference implementation?
5.4.2 LibAscon properties
5.4.3 Features introduced by LibAscon
5.4.4 Testing
5.5 Hazelnet Demo Platform 0.
5.5.1 Used hardware
5.5.2 What thedemodoes
5.5.3 Firmware structure Lo Lo
5.5.4 Firmware size
5.5.5 Laptop software,
5.5.6 Interacting with thedemo
5.5.7 Example CANlog
6 Potential protocol extensions
6.1 Perfect Forward Secrecy (PFS),
6.2 Automatic pairing of new Clients or a new Server
6.3 Hiding the plaintext length 0.
6.4 Increase SAD taglengtho oL
6.5 Transmitting-only parties and per-party counter nonces
6.6 Server replication
7 Conclusion
7.1 Summary e e
7.2 Final thoughts
Attachments
Bibliography

12

47
47
47
48
48
50
52
52
53
53
54
55
55
55
56
o7
57
58
59
60

65
65
66
66
67
67
68

69
69
69

71

73

List of Figures

1.1 Abstract representation of a CAN FD bus shared between the nodes Alice,

Bob, Charlie, and David. 20
1.2 Simplified plots of voltages of CAN wires and resulting logical bits of a
Low-speed (left) and High-speed (right) bus setup. 21
1.3 Abstract and simplified diagram of a CAN frame. Start of frame, end of
frame and various control bits are not shown for simplicity. 22
1.4 Abstract and simplified diagram CAN FD frame. Start of frame, end of
frame and various control bits are not shown for simplicity. 23

3.1 Abstract representation of a CAN FD bus shared between the Clients
Alice, Bob, Charlie, and a Session Server with an attacker Eve having
physical access to the same bus. Alice, Bob, and Charlie are each pre-
configured to securely communicate initially only with the Session Server,
without having the means to communicate with each other; it’s the Ses-
sion Server’s role to generate and distribute additional short term keys to
enable secure inter-Client communication. 32

4.1 Diagram of counter nonce reuse due to bus arbitration. Alice and Bob
both want to transmit a message in the same timeslot and both use the
next counter nonce that should be used (42). Alice wins the arbitration
and Bob automatically retries the transmission immediately afterwards.
Bob’s message now has a counter nonce that has already appeared in the

4.2 Security over CAN FD directly: the frame is secured, ready to be trans-
mitted. The plaintext must be short-enough to fit into a secured CAN FD
frame (SADFD). 42

4.3 Security over transport protocol: the security is applied to the long mes-
sage (SADTP), the fragments of which are sent over CAN FD. In this
example transport protocol the CAN ID is reused in each single frame. . . 42

13

14

5.1

5.2

5.3

5.4

Two applications co-hosted on the same device can use different instances
of the library state to independently secure the messages, even from each
other, so they can share message queues. An incoming secured message
popped from the queue is dispatched to the proper application, which
passes it to its Hazelnet instance and obtains it back decrypted and vali-
dated. Vice-versa, the application calls the library on a plaintext message
to get the message in a secure format, ready to be transmitted, and places
it into a shared transmission queue.. L.
Diagram of application-library interaction on transmission: the applica-
tion provides the plaintext data to the Hazelnet library, which returns
it to the application encrypted, authenticated, and packed into a CBS
message format, ready to be transmitted. The application has then only
to forward it as-is to the transmission function or queue.
Diagram of application-library interaction on reception: the application
obtains a secured, encrypted, authenticated message from a reception
function/queue and forwards it as-is to the Hazelnet library. Hazelnet
validates the message’s format, authenticity, freshness and decrypts it,
providing the plaintext data back to the application — or the proper error
code if something went wrong. L.
Photo of the Hazelnet Demo Platform’s hardware: three NXP S32K144EVB
microcontroller boards represent the parties (from left to right) Alice, Bob
and Server. An out-of-picture power supply provides 12 V DC and the
ground to the Bob board’s right side with a black coaxial plug. In the
bottom half of the picture, the orange twisted-pair wires are the CAN
bus, the white wire is the 12 V DC power distribution, and the black wire
is the ground. On the right of the picture, a PEAK System PCAN-USB
FD adapter (the black box) is sniffing the traffic on the bus and providing
it for a laptop/desktop computer to inspect, as an attacker would.

56

List of Acronyms and Symbols

10.
11.

12.

13.

14.

. ACK: Acknowledgement; in communication protocols it’s a confirmation of the

successful reception of a message.

. AEAD: Authenticated Encryption with Associated Data; cryptographic opera-

tion encrypting the data while proving the authenticity and integrity of both the
generated ciphertext and of arbitrary related plaintext, usually message metadata.

. AES: Advanced Encryption Standard; a standard block cipher used in many se-

curity applications.

API: Application Programming Interface; set of public functions, data structures,
and constants a software library, module, or service exposes to another software
component for the latter to use the former.

. BCM: Body Control Module; a microcontroller monitoring and operating various

accessories of the vehicle’s body, such as doors, windows, and ventilation.

. CA: Certificate Authority; entity in PKI issuing digital certificates.

CAN: Controller Area Network; a wired automotive communication bus.

. CAN FD: Controller Area Network Flexible Data-rate, extension of CAN with

larger and faster frames.

. CBC: Cipher Block Chaining; a block cipher mode of operation for encryption-

only of long messages.
CBS: CAN Bus Security; the security protocol introduced by this thesis.

CCC: Car Connectivity Consortium; a standard-setting body for vehicle commu-
nication protocols.

CRC: Cyclic Redundancy Check; an error-detecting code, used to verify the in-
tegrity of a message.

CSEc: Cryptographic Service Engine compressed; hardware security module on
NXP S32K1xx series of devices.

DC: Direct Current; constant, unidirectional electric current.

15

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

16

DH: Diffie-Hellman; a method to get two parties agree on a shared cryptographic
secret securely over an untrusted channel.

DoS: Denial of Service; malicious attack aiming to disrupt the availability of a
system.

GCM: Galois/Counter Mode; a block cipher mode of operation for authenticated
encryption of long messages.

HMAC: Hash-based Message Authentication Code; a keyed-hash wrapper func-
tion used to authenticate messages with better immunity against length-extension
attacks compared to a plain keyed-hash.

HZL: short for Hazelnet, the reference implementation of the CBS protocol.
ID: Identifier; a value representing something or someone.

IP: Internet Protocol; a communication protocol for routing data between local
networks, sitting between a data-link layer and the transport layer.

ISO: International Organization for Standardization; a global standard-setting
body for virtually every sector.

KEM-DEM: Key Encapsulation Mechanism — Data Encapsulation Mechanism;
a hybrid encryption paradigm, using a randomly-generated symmetric key to en-
crypt the data (DEM) and using asymmetric cryptography to encrypt/wrap the
symmetric key itself (KEM).

LTK: Long Term Key; persistent CBS cryptographic key, shared between Client
and Server.

MAC: Message Authentication Code, often called tag; short binary fingerprint
proving the authenticity and integrity of a message.

NFC: Near Field Communication; a set of low-power wireless communication pro-
tocols that let devices exchange data over distances of few centimetres.

OBD: On-Board Diagnostics; capability of a vehicle to diagnose its own abilities
and report them. The OBD interface is a standard way to access this data.

OS: Operating System; software that controls the hardware resources, inputs, and

outputs of a computer system, coordinating many processes using it concurrently.

OSI: Open Systems Interconnection; ISO group specifying the telecommunications
layering model.

PDU: Protocol Data Unit; entire message of the current telecommunication layer,

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

including metadata.

PFS: Perfect Forward Secrecy; property of cryptographic protocols that ensure the
confidentiality of the encrypted data protected by short term/session keys even if
the long term keys are leaked or compromised in the future.

PKI: Public Key Infrastructure; roles, policies, and procedures to manage the
lifetime of public key encryption and digital certificates.

RGB LED: Red-Green-Blue Light Emitting Diode; semiconductor light source,
programmable to emit any colour by combining the 3 primary ones.

RING: Random Number Generator.

RTOS: Real-Time Operating System; an operating system for applications that
need to react to events within very short periods of time (usually milliseconds or
less).

RX: Reception.

SAD: Secure Application Data; CBS message type containing encrypted and au-
thenticated data from the application.

SADFD: Secure Application Data over CAN FD; a SAD message in compact form
to fit within a CAN FD frame.

SADTP: Secure Application Data over a Transport Protocol; a SAD message in
expended form to be fragmented into many CAN FD frames.

SDU: Service Data Unit; data (payload) carried by the current telecommunication
layer, containing the PDU of the upper layer.

STK: Short Term Key; temporary CBS session key, generated by the Server and
distributed to the Clients.

TCP: Transmission Control Protocol; a transport protocol meant to run over IP,
which provides connections, reliability, retransmission and congestion control.

TLS: Transport Layer Security; a cryptographic protocol to secure data exchange
over TCP/IP. Probably the most used one worldwide, given that it’s the backbone
of most secured web and internet traffic.

TP: Transport Protocol; communication protocol abstracting away some proper-
ties of the data-link layers, typically providing additional reliability, fragmentation,
and flow control.

TRNG: True-Random Number Generator; hardware-based source of randomness,

17

46.
47.

48.

18

usable for cryptographic purposes.
TX: Transmission.

UAD: Unsecured Application Data; a CBS message type containing plaintext and
not-authenticated data from the application.

UWRB: Ultra-wideband; a low-energy pulse-radio technology with ability to mea-
sure the time-of-flight, thus measure the distance between devices accurately.

1 Introduction to the CAN bus

A modern vehicle incorporates a variety of microcontrollers, operating on parts of the
vehicle engine, transmission, breaks, chassis, ventilation, entertainment, door locking
and more. Generally, all these microcontrollers are communicating with each other
and collaborating on a task, often with one device being a controlling leader. Such
communication happens via wired protocols, commonly using the CAN bus.

For example, a modern, CCC' Digital Key-compliant vehicle access system is composed
of multiple radio technologies such as Bluetooth, Ultrawide-band (UWB) and Near-Field
Communication (NFC) [1]. An assortment of transceivers for each of these is commonly
operated by a leader device, triggering their radio activity and controlling which messages
the vehicle exchanges over the air with a smart mobile device (key fob, smartphone, smart
card or other wearable). Upon successful authentication of the mobile device’s identity
and verification of its physical proximity to the vehicle, the leader device triggers the
unlocking of the doors, finally granting physical access to the vehicle’s cabin.

This work aims to secure the communication happening over the CAN bus. To explain
the security problem at hand and its proposed solution, first we need to understand how
the CAN bus works. This section provides a high-level overview of the most important
characteristics of the CAN protocol.

1.1 The CAN bus

The Controller Area Network (CAN) bus is a vehicle bus designed to allow robust,
half-duplex, multi-master, message-based communication between a set of devices in
a vehicle, but it’s also used in industrial applications. The devices connected to and
communicating with a CAN bus are usually referred to as nodes. Being a bus, each
message is broadcast, meaning that all other nodes on the bus are able to receive it and
have to actively decide whether to process the message or discard it because it’s not
relevant for them.

The protocol is specified in the ISO 11898 series of standards [2][3][4][5]. In the ISO/OSI
model it takes the place of the physical and data-link layers, i.e., layers 1 and 2.

19

CAN bus

Figure 1.1: Abstract representation of a CAN FD bus shared between the nodes Alice,

Bob, Charlie, and David.

We hereby avoid listing all internal workings and properties of the CAN bus as they are

easy to find with a quick online search [6]. Instead, let us show only the parts which are

relevant for our considerations.

1.1.1 The physical layer: differential signalling

The CAN communication physically happens on two wires with differential signalling. A

diagram of the wire voltages is available in Figure 1.1.1. A brief synopsis of the physical

architecture follows:

1.

2.

20

The differential signalling wires are denominated CAN High and CAN Low.

The setup of wires, resistors, and used voltages differs depending on the system
requirement: High-speed CAN (ISO 11898-2, [3]) is the mode focusing on perfor-
mance while Low-speed CAN (ISO 11898-3, [4]) is optimised for robustness and

longer lines.

Resistors are connected to the High and Low wires to pull the voltage between
them to a specific “at rest” level when no device is transmitting, called recessive
voltage. Such voltage (Low-to-High) is close to 0 V for High-speed CAN and close
to —5 V for Low-speed CAN.

Dominant voltage is the one actively induced on the High and Low wires by a node,
opposing the recessive state. As the name implies, dominant voltage overrides the
recessive one. As long as one node keeps the voltage on dominant levels, no other
node is able to set it to recessive. To achieve a recessive state, all nodes on the bus
must stop actively setting the voltage to dominant. Such voltage (Low-to-High) is
close to +2 V for both High-speed and Low-speed CAN.

The nodes must have CAN transceivers that are able to read the bus voltage
while they themselves are transmitting, enabling them to detect whether their
own recessive voltage is being overwritten with a dominant one by another node.

The logical value 1 is represented by a recessive and 0 by the dominant state. As

a consequence, logical zero bits have a higher priority and they overwrite logical
ones.

It’s easy to see that performing a Denial of Service (DoS) attack on the CAN bus is trivial
on a physical level: other than the obvious cutting of the wires, placing a malicious active
CAN transceiver on the bus programmed to constantly transmit dominant values will
prevent any other node from communicating.

Low-speed CAN High-speed CAN
5V
CAN Low
CAN High
\ / \ / CAN Low | /
CAN High
oV oV
Rec. Dom. Rec. Dom. Rec. Rec. Dom. Rec. Dom. Rec.
Bit 0 Bit 0
Bitl — | Bit 1

Figure 1.2: Simplified plots of voltages of CAN wires and resulting logical bits of a Low-
speed (left) and High-speed (right) bus setup.

1.1.2 The data-link layer: the CAN frame

With the physical layer described above, we are now able to transmit and receive binary
digits. As with most communication protocols, they are organised in a message, called
frame. Here follows a simplified overview over the most important features of CAN
frames:

1. The header of a CAN frame includes a message identifier, often referred to as
CAN ID. This field can be either 11 or 29 bits long in the so called Base frame
format and Extended frame format respectively. The CAN ID is used as a unique
identifier of the message source, and may include additional metadata encoded in
it, such as the type of the message content and/or its destination, depending on
the application.

2. When two nodes happen to transmit simultaneously, a message arbitration proce-

21

dure is used to determine which message has higher priority by comparing the two
CAN IDs bit-by-bit. The logic value 0 (dominant) takes precedence over the value
1 (recessive), meaning that the message with a smaller CAN ID value! wins the
arbitration. The CAN transceiver that loses the arbitration stops transmitting,
lets the winning message be written on the bus, and afterwards usually retries the
transmission. For this reason, there must not be two nodes using the same CAN ID
as their messages would collide after the ID transmission, causing bus errors.

3. The Service Data Unit (SDU) of a CAN frame, often called payload or data section,
may carry at most 8 bytes (octets); the messages are indeed short.

4. CAN frames come with a Cyclic Redundancy Check (CRC) in the trailer, guaran-
teeing the integrity of the data within reasonable probability. The CRC does not
offer any assurance of the authenticity of the message.

5. An acknowledgement (ACK) slot is a recessive bit at the end of each frame being
transmitted and overwritten with a dominant value by any other node on the bus
receiving said frame to acknowledge it. By inspecting this bit’s alteration, the
transmitting node can see if either no one received the frame or if at least one
node received it, but without knowing which one(s). The transmitting node may
automatically resend the message in case of missing acknowledgment, if configured
to do so.

6. The CAN protocol defines no way of fragmenting and reassembling longer payloads;
if required, it has to be handled separately by higher layers in the communication
stack (such as the transport protocol). This topic is further explored in Section 1.3.

7. The CAN bus with the High-speed wiring configuration and proper transceivers
can reach a gross data-rate of 1 Mbps (in some cases slightly more). The protocol
overhead to transfer an SDU of 8 bytes varies between 40 and 60%, depending on
the size and content of the CAN ID and CAN SDU.

CAN ID SDU length SDU CRC
11 or 29 bits 4 bits 0-8 bytes 15 bits

Figure 1.3: Abstract and simplified diagram of a CAN frame. Start of frame, end of
frame and various control bits are not shown for simplicity.

"When looking at the ID as an 11- or 29-bit unsigned integer, big-endian, where the most significant
bit is the first transmitted.

22

1.2 Faster and longer SDUs with CAN FD

The CAN FD bus (Controller Area Network — Flexible Data-rate) [7][8] was originally
an extension of the CAN protocol by Robert Bosch GmbH, later included in the ISO
standard specification [2], with the goal of transporting more data per frame at higher
speeds.

1.2.1 The CAN FD frame

Let us briefly list the differences compared to classic (non-FD) CAN frames:

1. A reserved bit from the frame header (not in the CAN ID) is used to distinguish
between a classic CAN and a CAN FD frame.

2. The SDU is transmitted at a higher data-rate compared to the header and trailer
(up to 15 Mbps) and supports sizes of 0-64 bytes, allowing up to 8x more data per
frame compared to classic CAN.

3. The SDU length is indicated with only 4 bits so the possible lengths are: 0, 1,
..., 8 bytes as in the classic CAN or 12, 16, 20, 24, 32, 48, 64 bytes for longer
payloads. A trailing padding is applied where required to reach one of the allowed
length. The actual length of the useful data before the padding must be provided
by other means; encoded in the CAN ID, in the SDU itself or known in advance,
for instance from a preconfigured map from CAN ID to SDU format?.

CAN ID SDU length SDU CRC
11 or 29 bits 4 bits 0-64 bytes 17 or 21 bits

Figure 1.4: Abstract and simplified diagram CAN FD frame. Start of frame, end of
frame and various control bits are not shown for simplicity.

1.3 Fragmentation and reassembly

As one might expect, even when using CAN FD, 64 bytes of SDU may again not be
enough for some applications, for example transferring a 4096 bit (512 bytes) RSA
public key. For this reason, a transport protocol may be employed to:

2For example: transmitting 13 bytes will add a 3-byte padding to get the SDU size to 16 bytes and the
receiving side must know somehow to cut away the last 3 bytes of the SDU before processing it any
further in the application.

23

1. fragment a too-long SDU into smaller slices,
2. fit each slice into a frame of the underlying CAN or CAN FD protocol,

keep track of what has been transmitted,

-~ W

potentially re-transmit lost frames,

5. and reassemble the full message on the receiving side.

1.3.1 The standard solution with ISO-TP

The ISO-TP [9] is a Transport Protocol defined over CAN or CAN FD frames that
allows up to 4 GiB of SDU to be transmitted through fragmentation. ISO-TP is mostly
used for diagnostic messages (like OBD) but can also be used for other purposes.

The protocol is specified in the ISO 15765-2 series of standards [10]. In the ISO/OSI
model it takes the place of the transport layer, i.e., layer 4.

An ISO TP drawback may be the slowness of transmission of large frames due to the
various timeouts, forced delays between successive fragments and confirmation frames
sent periodically by the receiving party. These factors are parametrisable and can be
configured to match the performance of the nodes in the system and the latency re-
quirements. The fastest configuration supports no confirmation frames and no enforced
delays between fragments.

A second important disadvantage of ISO-TP is the missing possibility to multicast frag-
mented SDUs: only single-frame messages can have multiple destinations, multi-frame

ones have a single destination address encoded in the CAN ID.

1.3.2 Custom-tailored transport protocols

One alternative is of course to implement a custom transport protocol based on one’s
needs, for instance the need to support multicasting of fragmented messages. Clearly,
each application may require different features from such a protocol, may it be low
latency, robustness, or low bus load. For this reason, it would be unproductive to list
numerous possibilities for how such a custom protocol could work.

Just to fix our minds onto something, let us give a very simple example: a basic, unreli-
able transport protocol, similarly to what IP does in the TCP/IP communication stack,
may just fragment the too-long data into CAN or CAN FD frames and send them unre-
liably one after the other without acknowledgments or retries within the transport layer.
The receiving party verifies whether all fragments have been received and concatenates

24

them; if any kind of error occurs during the reassembly process, simply all received data
is discarded silently.

25

2 Bus security and threat model

The CAN bus was designed to be robust and reliable for safety purposes. Security against
attacks was not considered during its development; all messages travelling on the bus
are plaintext and without authentication. For this reason, sniffing, or spoofing any data
exchanged on the bus is trivial and inexpensive to attack using any CAN transceiver on
the market.

Confidential data, such as cryptographic keys, the CAN nodes may exchange with each
other is completely unprotected and an attacker reading it may use it to compromise
other bus-connected subsystems. The messages are also not authenticated, thus carrying
no guarantee that the source is a node that is originally part of the bus. For an attacker
it’s also easy to inject false, spoofed frames onto the bus, forcing other nodes into a
desired behaviour. This could include, for example in an automotive scenario, messages
that unlock the vehicle doors and start the engine, leading to vehicle theft.

Nowadays it should be obvious to see that any system transmitting plaintext messages
is unsecure and unsafe. This work proposes a lightweight security protocol protecting
this communication.

2.1 Threat model

As a first step, we must define what are we trying to protect.

2.1.1 Primary threat: sniffing, spoofing, replaying messages

The main vulnerability we are focusing on in this work is the protection against a Man
in the middle (MitM) attacker tapping the wires of the CAN bus and, with the help of
an external device, not originally part of the vehicle architecture, being able to perform
some or all of the following:

1. Sniffing sensitive data, i.e., reading the content of plaintext messages in transit on
the bus.

27

The cryptographic property we desire against such an attack is the confidentiality
of the messages. In practice this means encrypting the message payloads, so no
sniffer can understand their content.

2. Spoofing of messages, i.e., transmitting messages that claim they originate from a
separate but real node on the bus.

The cryptographic property we desire against such an attack is the authenticity
of the messages. In practice this means adding a Message Authentication Code
(MAC), sometimes called tag, to the message to guarantee the message was gen-
erated by a known party.

3. Tampering of messages, i.e., active changes in the messages in transit on the bus
without the other parties realising it.

The cryptographic property we desire in our system that opposes such an attack is
the integrity of the messages. While such an attack is not exactly easy to achieve
due to how the CAN bus works on a physical level, the message integrity typically
comes for free with the authenticity property when using a secure MAC.

4. Replay attacks, i.e., reuse of old messages to induce a behaviour in the bus-

connected devices.

The cryptographic property we desire against such an attack is the freshness of
the messages, sometimes called timeliness. In practice this means adding a nonce,
a unique, never-reused, public counter or timestamp to the message to guarantee
the message was generated recently.

2.1.2 Secondary threat: untrusted co-hosted applications

Another, more architectural, threat this work was considering is untrusted software
applications co-hosted on the same CAN node. An application may be untrusted because
it’s developed by a different company and then installed on the same physical device by
the entity responsible for the overall system development.

Two or more co-hosted applications could then read each other’s decrypted messages
from a shared message queue. The solution here is conceptually simple: moving the
implementation of the protocol from a shared security layer into the application space,
making the secure channel and end-to-end one, from transmitting application to receiving
application. This requires the implementation of the security countermeasures to be able
to co-exists with other concurrent instances of itself on the same device (e.g., by handing
mutual exclusion on any shared resources).

28

2.1.3 Rationale for the selected threats

These threats were chosen as they are most relevant for the company (NXP Semicon-
ductors) the thesis author was working at while the present work was being developed:
in automotive access systems, the ultrawide-band (UWB) radio technology is getting
traction as a secure distance-bounding system. This is used to check whether the holder
of a key (physical or digital), having the right to access the vehicle, is in fact physically
close-enough to the vehicle itself and the communication key-vehicle is not being relayed
by thieves.

The secure part of the distance-bounding system requires each UWB node on the vehicle
to obtain a cryptographic key from somewhere off-band, usually from a central leader
device, such as the Body Control Module (BCM). Naturally, if the transport of this key
is unprotected, the security of the entire access system falls short: sniffing the plaintext
key on the bus lets the attacher inject spoofed, but accepted, UWB frames in the air,
which may make the system susceptible to relays again.

2.2 Not included in the threat model

It’s worth underlining what security threats this work is not focusing on for clarity,
mostly because they were deemed out of scope for the final products of the company
(NXP Semiconductors) the thesis author was working at while the present work was

being developed. They are:

1. Protection against compromised, rogue nodes: the endpoints of the communication
are assumed secure and well-behaving, just like in the TLS protocol. This is a
requirement in order to have a symmetric cryptographic key shared between the
two or more communicating parties.

An attacker could find firmware or side-channel vulnerabilities on existing, original
nodes on the bus and manipulate such nodes to sniff and decrypt messages or
transmit arbitrary data that any other node would accept. Such an attack was
deemed harder-enough compared to simple sniffing and spoofing of plaintext bus
messages by a third party; the expertise, tools, and time required to achieve it
compared to sniffing and spoofing plaintext messages on a shared bus is orders of
magnitude higher.

2. Privacy of the messages and hiding the communication metadata. The rule of
thumb applied here is that any user-data is protected because it’s part of the
secured payload of the messages and the privacy of the nodes themselves is not

29

30

really relevant, given that they are just machines with fully-automated behaviour.
Details not being handled are thus:

e Obfuscating CAN IDs: this was deemed infeasible, as the CAN IDs are the
differentiating element between messages. If this field contains confidential
data, then such data should be moved to the (secured) payload and replaced
with a simple enumeration of entire IDs instead of having specific bits of the
ID have a decodable meaning.

e Hiding which nodes are communicating and when: the microcontrollers at-
tached to the bus do not need to hide their behaviour, generally. If there is a
real need to do so, then simply a random transmission of dummy messages to
be discarded by the receiver is easy to achieve at application-level and would
provide sufficient noise for an observer.

e Length of encrypted data: the messages contain a public, plaintext value
indicating the amount of bytes of the plaintext. This was chosen to allow
the usage of stream ciphers that generate ciphertexts of the same length as
the plaintext — additionally hiding the meaning of the messages was not a
requirement, only the content of the message was to be confidential.

Hiding such information would require encrypting this field, thus making the
plaintext length part of the ciphertext; additionally the plaintext would have
to be padded to a minimum secure length (e.g., 128 bits) to achieve some level
of obfuscation of the message content. This could be done in future changes
to the proposed solution, as discussed in detail in Section 6.3.

3. Leaks of the long term keys. This work was mostly focusing on getting the nodes

to communicate in a secure manner using lightweight cryptography and a simple
security architecture. Perfect Forward Secrecy (PFS), the ability to unbind the
short term (session) keys from the long term keys, in order to protect the former
if the latter are leaked, was not a requirement.

The choice was done in order to speed up the development process and being able
to use only symmetric cryptography for a computationally lighter protocol. It has
to be noted that very simple extensions to the designed solutions can be added in
order to achieve PFS, as discussed in Section 6.1.

. Secure storage of cryptographic keys used to protect the both the data in transit

and at rest. To be done properly, specific hardened hardware is required such as a
secure element, thus it was not in the focus of this work, as it could have the exact
same implementation, only running with a protected device.

3 The proposed solution: CBS protocol

Having explained the basics of the CAN bus and what our threat model is (and what
it excludes), we can now present the core part of this work, being the proposed security
solution.

The CAN Bus Security or in short CBS is a centralised Client-Server protocol to enable
cryptographically secure, multicast communication within a set of trusted
devices connected to the same CAN FD bus. CBS is designed to be simple, fast,
resistant to replay attacks, and allow a simple reconfiguration in case a Client requires
a reset of its settings or a replacement in case of hardware failure. CBS is based on the
revised nonce-based Needham-Schroeder Symmetric Key protocol [11][12], which is the
basis for the Kerberos protocol, for the key distribution and on vatiCAN [13] for the
freshness nonces.

CBS protects against passive and active Man-in-the-Middle attacks on CAN FD bus traf-
fic, much like TLS does for TCP connections. The focus is solely on the security during
transport of messages between parties who are assumed secure and uncompromised.

3.1 CBS requirements, briefly

CBS assumes the data-link layer is CAN FD because the 8-byte SDU in classic CAN
frames are not enough! to carry the cryptographic overhead (nonces, MACs etc.).

The platform using CBS must provide a true (hardware) random number generator
(TRNG) and a simple timestamping function, used to prove the freshness of the CBS
messages. Synchronised clocks are not required.

One device on the bus must act as a Server and is expected not to lose any messages.
The other devices may have arbitrary power cycles. Further ideas on improving the
availability of the Server can be found in Section 6.6.

In theory it should still be possible (although unpractical) to use CBS on top of a transport layer
handling the fragmentation and reassembly of 64 or more bytes of SDU length into classic CAN
frames of 8 bytes.

31

Bob Eve Charlie
Client Attacker Client

LTKpg LTKcs

a " D CAN FD bus

Session Server

LTK A5
LTKps
LTKcs

")

Figure 3.1: Abstract representation of a CAN FD bus shared between the Clients Alice,
Bob, Charlie, and a Session Server with an attacker Eve having physical
access to the same bus. Alice, Bob, and Charlie are each preconfigured to
securely communicate initially only with the Session Server, without having
the means to communicate with each other; it’s the Session Server’s role to
generate and distribute additional short term keys to enable secure inter-

Client communication.

3.2 The protocol specification

In the attachment ATT-1 of this document, the entire technical specification of the CBS
protocol is available.

The specification includes message formats, meaning of each bit, the parties’ behaviour,
the checks to perform, the cryptographic primitives to use, states and configuration
structures — in short everything required in order for someone not familiar with this
work to write a software implementation of the whole protocol from scratch. It is in a
separate document in order to distinguish between the technical protocol specification
and this thesis document, which instead focuses on the academic part and explanations
of the design process.

It’s recommended for the reader to evaluate the specification first before continuing

reading this document.

Further details on the protocol design process and rationales are discussed in Section 4.

32

3.3 The protocol reference software implementation

In the attachment ATT-2 of this document, the source code and documentation of the
reference implementation of the CBS protocol is available, called Hazelnet. It is a mid-
dleware library, written in ISO C11, cross-platform, implementing both the Client and
Server roles of the protocol. The library is hardware-independent and can be used both
on desktops and embedded machines. It was heavily documented and unit-tested, with
a particular focus on clean code, to the extent the C programming language inherently
allows.

Hazelnet internally uses the the LibAscon [14] implementation of the Ascon cipher, which
is described in Section 5.4. LibAscon was initially developed as a personal experiment
for academic purposes and published as a stand-alone, open-source project. The devel-
opment of the Hazelnet library was an excellent opportunity to use LibAscon in practice
and see how well it works as a dependency, so it was greatly expanded to meet Hazelnet’s
needs. LibAscon is available as attachment ATT-3 of this document.

In the attachment ATT-4, the source code of a simple demonstrator called Hazelnet
Demo Platform is available, which shows 2-4 CAN-connected microcontroller boards
communicating securely over the bus using the CBS protocol and the Hazelnet imple-
mentation.

Further details on the software implementation are discussed in Section 5.

33

4 Protocol specification design choices

In this section we try to explain the requirements and restrictions posed to the devel-
opment of the CBS protocol specification and for each one we expand on the way CBS
tackles and why.

Adding a security layer on top of the existing CAN bus communication is not trivial due
to the properties of the bus itself and some constraints of the automotive environment,
which differ from a classic and well-studied point-to-point channel security; a problem
handled by many protocols already, TLS being the most notorious example.

4.1 Multicast communication

The bus messages are multicast, meaning that each message has multiple receivers —
and each one of them must be able to decrypt and authenticate their secured message.
Regardless of whether we use a symmetric schema or an asymmetric one with KEM-
DEM, in the end the message is always protected by a symmetric cipher and we need
to distribute the same symmetric cryptographic key to all involved parties in a secure
manner.

CBS uses a Client-Server schema, where the Server maintains the currently-in-use short
term keys and distributes them to the Clients using long term key, unique per Client-
Server pair. With a simple two-message handshake, each Client can obtain from the
Server the symmetric short term key which is shared with other parties. The centralisa-
tion of the point-of-truth simplifies the overall architecture in terms of key distribution,
in contrast to a partially or fully distributed system. The latter was explored initially
but abandoned because of the increased complexity! in architecture and performance.

To further restrict access to each other’s messages, the concept of Groups of parties was
introduced: that is simply a virtual set of Clients and the Server (always included) that
use a specific symmetric short term key for their message exchange, differing from the
keys of other Groups. Multiple Groups can co-exists on the same physical bus or bus

'One may think of the complexity of a fully-distributed n-party key-agreement handshake (n > 2) to
quickly realise a central leader makes the process much more straight-forward.

35

branch in order to enforce the principle of least-privilege: Clients that don’t require
talking to each other should be in separate Groups in order not to be able to decrypt
each other’s messages. At it’s most extreme level, a Group can consist of only one Client
that can only talk to the Server.

4.2 Arbitrary power cycles

In a real-world system in order to spare energy, any node connected to the bus may
switch off or enter a low-power state at any point in time.

Because of the unpredictable availability of the interlocutors, CBS does not handle con-
nections and re-transmissions, to stay closer to the low-level approach the CAN bus
already uses; there is no tracking of the active or sleep states of other Clients. The
protocol’s design allows the Clients to power-down at any time, because of the Server
keeping track of the messaging of the bus, of the currently used counter nonces, of the
short term keys and their expiration. Any Client powering up/existing a low-power state
can simply request the current state to the Server without bothering about staying in
touch with all other Clients.

The only requirement CBS has in terms of power cycles is the assumption that the Server
is always able to receive all messages, thus never powers-down. While this may seem as
a very strict requirement, the usual leader-follower design of automotive systems where
some central devices (like the Body Control Module) operates, configures, and controls
the other peripheral devices ties very well with the CBS Client-Server architecture:
simply the system leader also acts as a CBS Server.

4.3 Fast handshake ramp-up

Similarly, for usability and functional safety reasons, the nodes should not take too
much time to perform any initial handshakes after they boot up or wake from a low-
power/sleep state. However, this does not affect only a single node, but also an entire
CAN bus branch using the CBS protocol: when a vehicle is initially activated (e.g.,
internal combustion engine start, electric vehicle boot up), the branch is be powered on,
which would simultaneously trigger some synchronisation handshakes between all nodes
on the branch, not just one or two. If each handshake requires a lot of time, the vehicle
driver may have to wait a lot just for all cryptographic states to reach a ready point.

In CBS the handshake is a simple two-message exchange Client-to-Server and vice-versa
for each Client and for each Group the Client is in. On the bus branch power-up,

36

n Clients imply 2n messages per Client’s Group being exchanged on the bus for each
Client to get up-to-speed and enable its secure communication. In simple initial timing
measurements, a complete handshake between a single Client using 1 Group and the
Server requires 2-3 ms on a CAN FD bus with 500 kbit/s arbitration-rate and equal
data-rate. A few arguments for this design decision:

o The handshake process is reused for both initial Client boot-up and resume from
low-power states.

o It may not be the case that all Clients are needed simultaneously and immediately
after vehicle initialisation. E.g., any entertainment system may wait for 2 more
seconds compared to engine health checks, reducing the initial bus load spike.

o It may not be the case that each Client has to enable each of its Groups simulta-
neously and immediately: some may be done lazily, on-demand, again to reduce
the initial bus load spike. E.g., a Group used for the cabin ventilation system may
not be initialised until the person in the vehicle activates the ventilation system in
the first place.

e Short term keys are distributed wrapped by long term keys, which are unique per-
Client. Having long term keys used by more than one Client could speed up the
short term key distribution by means of multicasting, but per-Client long term
keys are needed to simplify the replacement/reconfiguration of a Client, because
they avoid reconfiguring more devices than just the Server.

4.4 Low-performance devices

Generally CAN bus nodes are small, low-power and low-performance microcontrollers.
We may not have the luxury of using asymmetric cryptography because it would require
too much computation time for the devices at handshake time.

The design of the CBS protocol is heavily inspired by the Kerberos protocol exactly
for this reason: it uses only symmetric cryptography to keep all operations lightweight.
While the used ciphers and hash functions can be swapped with different ones, the default
proposal and the reference implementation uses the Ascon [15] v1.2 cipher, which was
specifically designed to be a lightweight symmetric AEAD cipher and hash function.
The rationale behind this choice is available in Section 4.11.

37

4.5 Device replacement

Physically replacing a Client should be a simple procedure, because it’s a common op-
eration when considering that these devices are placed on moving vehicles. Some CBS
Clients may physically break during car collisions and it should not be too complicated
to swap them with new instances.

Initial drafts of the CBS protocol were focused on Public Key Infrastructure (PKI)
schemas, where asymmetric cryptography is used to represent the identities of each
single device and to distribute short term keys. This simplifies the replacement or
reconfiguration of a device: the only thing the new device requires is a certificate signed
by a trusted Certificate Authority (CA) each other party already knows and trusts —
at least that’s the desired end effect. In reality, revocations of these certificates in
case something is leaked, updating the list of Certificate Authorities on all devices if
something is changed at the PKI root of trust, handling certificate expirations offline
are all very real problems that are easy to overlook.

Newer iterations of the CBS design then focused on a centralised schema based only
on symmetric cryptographic primitives. This keeps similar easiness of replacement of
Clients without the problematic “side effects” of PKI. Let’s imagine the Client Alice is
physically replaced with Alice2: the only thing the replacement technician needs to do
is generate a new 128-bit random key and install it on both Alice2 and the Server, as
the new long term key used between them, i.e., LT K 55. A straight-forward operation.

Quite different is the case when the Server needs to be physically replaced. The main
disadvantage of a centralised architecture is of course a single point of failure. Replacing
the Server with a new one requires the fresh generation of all long term keys and their
installation on all of the Clients. For large buses this may be a lot of work. This of
course assumes that the old Server is completely unusable and its long term keys cannot
be extracted out of it (as it should be in a properly secured system).

Two notes are two be made about the replacement of the Server:

e Because the Server is usually running on a central leader device, such as the body
control module, having a complete failure of such central, critical device is overall
an outstanding issue. Installing a new body control module may require a lot of
configuration in the first place and the cryptography of bus communication is just
one of the many problems.

e The CBS protocol as of now assumes pre-installed long term keys, but the protocol
could be extended, even in a backwards compatible manner, to allow a long term
key agreement pairing procedure between a Client and a Server, so they generate

38

a new long term key instead of a human operator pre-configuring it. Details are
available in Section 6.2.

4.6 Bus arbitration

The CAN bus allows transmission of only one node at the time (half-duplex) and thus
collisions may happen when 2 more more nodes try to publish a message on the bus
simultaneously. The CAN protocol handles it by prioritising the messages that have
a more leading zeros in the CAN ID (thus a lower CAN ID numerical value), because
zeros are dominant values. One transmitting node wins this arbitration and gets to
finish the message transmission; the remaining nodes that lost usually try to transmit
again immediately after the winning message has passed and the arbitration process
repeats. On a practical side, such a bus design may introduce unpredictable delays in
the transmission of the messages, because there is no control on when other bus nodes
with higher priorities are transmitting. Delays mean that the content of the message
may not be fresh any more.

The Secured Application Data messages in CBS employ counter nonces to prove their
freshness. These nonces are integer values incremented for each message that appears
on the bus. The rationale is that any node tracking which is the current nonce to use
for the next message to appear on the bus can discard old messages simply be checking
whether the nonce matches the expected one. The goal of such an approach is to prevent
replay attacks of old messages.

The issue happens when the parties Alice and Bob (also more than two) try to transmit
a message using the same counter nonce simultaneously. Let’s imagine that Alice wins
the arbitration process and publishes a message on the bus with a counter nonce Ng..
Now all other parties would expect the next message to have a nonce of N, + 1, but
then Bob transmits his own pending message also carrying the nonce Ng,.. Clearly this
is not a replay attack, but simply a consequence of the CAN bus protocol. Bob’s message
should be accepted.

CBS handles this by introducing tolerances: assuming N, is the next counter nonce to
appear on the bus, instead of rejecting any message containing nonces < N, the parties
reject the messages with < N, — ctrdelay(m,t, S, D), with ctrdelay(m,t,S,D) € Z
and > 0 being a dynamic tolerance level that gets smaller in case of no traffic on the bus,
to reduce the attack surface for replay attacks. The formal specification of the ctrdelay
function, its arguments m,t,.S, D, and example plots of the function are available in the
CBS specification ATT-1. With ctrdelay(m,t,S, D) = 1, the message from Bob in the
example in Figure 4.1 would already be accepted.

39

A: 39 B: 40 A: 41 A: 42 B: 42

Time Lost Retried

Bob

Figure 4.1: Diagram of counter nonce reuse due to bus arbitration. Alice and Bob both
want to transmit a message in the same timeslot and both use the next
counter nonce that should be used (42). Alice wins the arbitration and
Bob automatically retries the transmission immediately afterwards. Bob’s
message now has a counter nonce that has already appeared in the past.

The S, D tolerance parameters of the ctrdelay function configure the maximum Silence
Interval and the maximum Counter Nonce Delay respectively. The first decides how
many messages from the past are accepted immediately after receiving a valid one, the
second decides how quickly the tolerance drops to zero after receiving no messages.
Configuring these two values depends on the system requirements, bus activity, amount
of devices, and must be evaluated on a case-by-case basis. Some observations are:

e The tolerances may be configured per receiving Party and per Group, so some may
be more tolerant than others.

o If simultaneous transmissions within the same Group are to be expected often, a
higher maximum Counter Nonce Delay D for that Group is recommended. This
depends of course on the amount of Parties in each Group.

o If long periods of silence between two transmissions within the same Group are to
be expected, then a low maximum Counter Nonce Delay D and a low maximum
Silence Interval S are recommended.

o If some Parties only transmit for extended periods without them checking any
incoming messages, which would update their local counter nonce value, a higher
maximum Counter Nonce Delay D is recommended. That is the case of a device
without multitasking capabilities currently busy on a heavy blocking operation,
which immediately transmits the operation’s result, without checking the reception

40

queue first. A protocol extension to handle transmitting-only devices is discussed
in Section 6.5.

4.7 Message logging and debugging encrypted content

CAN buses host a plethora of nodes with different functionalities and they must un-
dergo intensive testing in the automotive industry. Having these devices communicate
in encrypted manner is counter-productive for the debugging and testing process. Addi-
tionally, one may be interested in logging the data all parties exchange with each other
for the same reason, but also for safety logs and fault history of a deployed system. Key
escrow is a necessity. Although this topic is often discussed in context of privacy when
a human is involved in the communication chain, it should pose no political issue when
machines are the only communicating party in a fully automated manner.

The centralised nature of CBS is perfect for these requirement: the Server is the party
generating all short term keys and distributing them to all Clients. It is thus by definition
able to decrypt and validate all message coming from all Clients, regardless to which
Group they are addressed to. The Server implementation may decide to decrypt all
messages before logging them in plaintext or (better) logging them encrypted, but with
a different key that the humans inspecting the system also have.

4.8 Optional message fragmentation

The CAN FD bus allows frames with payloads up to 64 bytes. While this may be
plenty for many applications, there are definitely some that need more, as explained
also in Section 1.3. A big question when designing the protocol was: where should it
lay in the stack of communication layers? On top of the CAN layer or on top of a
fragmentation /reassembly layer (if available)?

The CBS specification initially focused solely on securing data fitting into individual
CAN FD frames with so called SADFD messages. To support transport protocols, a the
SADTP message was added. These are a slight variation of the SADFD messages with
longer payload and tag, as there is more space assumed available. The fragmentation of
long SADTP messages is left to any underlying transport layer.

41

Plaintext message

CAN ID Encrypted message Tag

Figure 4.2: Security over CAN FD directly: the frame is secured, ready to be transmit-
ted. The plaintext must be short-enough to fit into a secured CAN FD frame

(SADFD).
Plaintext message
CAN ID Encrypted message Tag
CAN ID Fragment 1 CAN ID Fragment 2

Figure 4.3: Security over transport protocol: the security is applied to the long message
(SADTP), the fragments of which are sent over CAN FD. In this example
transport protocol the CAN ID is reused in each single frame.

4.9 Authenticated-only messages

In some feedback about the protocol it was noted that there are no message types
transporting plaintext but authenticated application data, thus having only the tag
(MAC). It’s worth mentioning that these messages were included in initial versions of
the protocol specifications, but were later dropped in favour of AEAD-secured messages.
The message structure was virtually the same: metadata, counter nonce, application
data and tag; the only difference was whether the application data is encrypted or not.

The authenticated-only message were removed from the specification for the following
reasons:

e Avoid human errors: the protocol user would have to decide whether to keep the
application error confidential or not, which could lead to critical data being leaked
if the wrong message type is selected. Thus it’s better to have only one secure

42

message type that protects also the content’s confidentiality.

e Ignoring the tag: when the data is in plaintext, it may be tempting to skip the
validation of the MAC and just use the data. If such data is encrypted, on the
other hand, the only way to obtain it is to process it through the AEAD cipher
which will automatically validate it’s integrity and authenticity.

o Additional complexity: both the protocol specification and any implementation
would have to deal with one more message type in a yet separate manner. More
code means higher probability for bugs, thus better to keep the feature set and
APIs at minimum. The same secured data transfer could be achieved by fully
encrypting the payload.

e Performance: Ascon, the default cipher for the CBS protocol, has an interesting
property, where its hash function has a higher computational cost than its AEAD

2

cipher, because the hash uses more permutations®. Thus the cost of encrypting

and authenticating the data is lower than just authenticating it.

4.10 Message length and MAC length

64 bytes of payload are not much in the modern world, where an Ethernet frame can
carry 1500 bytes or even more with the jumbo frames extensions. The CBS SADFD
message was designed in a way to reduce the overhead around the ciphertext as much
as possible, exactly because of the available space being at premium.

For starters, the counter nonce was defined as a 24-bit integer rather than a 32-bit one
to spare one byte — the most significant one, which would rarely be used in the first
place. It was deemed that limiting the amount of messages to (up to) OxFFFFFF =
16 777 215 before changing short term key was enough for most real-world applications.
For context, assuming all frames contain 64 bytes of pure data, that is approximately
1 gigabyte of data within one session, which is more than 2 hours of runtime assuming
constant communication without overheads at 1 Mbit/s.

Secondly, the tag has been reduced to 64 bits instead of the commonly accepted security
level of 128 bits. This clearly reduces the overall security level of the system by a lot,
it’s very worth noting. The idea of using only 8 bytes for the message authentication
code comes from the compatibility of CBS with block ciphers, namely AES. The AES

2Specifically, the Ascon-128 AEAD cipher, v1.2, uses a 12-round p, permutation once at initialisation
and once at finalisation, the rest for absorbing input data is done with 6-round p, permutations every
64 bits of input data. The Ascon-XOF hashing function uses instead only 12-round permutations
[15].

43

cipher processes blocks of 128 bits (16 bytes) of data at the time. 3 blocks are 48 bytes,
which leaves 16 bytes of space out of the 64 in the CAN payload for additional security

metadata. Out of these 16, we have 3 for the counter nonce, 1 for the application data
length and up to 3 for the SADFD-Header (assuming it’s not part of the CAN ID),
which leaves us with 9 bytes, which was rounded down to 8 in order to maintain 1 byte

of free space available for future usage at the end of the message. Further notes on how

to increase the tag length can be found in Section 6.4.

In case of stricter security requirements, the SADTP message format may be used in-
stead, which has a 128-bit MAC. The drawback is the usage of a 32-bit field to indicate
the length, thus consuming more space for the length value itself.

4.11 Motivation for choosing the Ascon cipher

44

Ascon is an Authenticated Encryption with Associated Data (AEAD) cipher de-
signed to be lightweight, which is exactly our use case. We don’t need to worry
about cipher modes like CBC, GCM, etc. as the cipher does already everything
for us, compared to block ciphers like AES.

Ascon has been selected as the primary choice for lightweight authenticated en-
cryption in the final portfolio of the CAESAR competition (2014-2019) [16] and
is (at the time of this writing) competing as a finalist in the National Institute of
Standards and Technology (NIST) Lightweight Cryptography competition (2019-)
[17].

Ascon has a sponge-based design, making its hashes resistant to length-extension
attacks, so we don’t need to employ HMAC constructs, simplifying the message
authentication process.

The encryption, decryption, and hashing process reuses the same permutation
function, thus we spare on code size.

Ascon produces ciphertexts of the same size as plaintexts. This is an information
leak about the plaintext, but it is not necessarily an issue for a system using CBS,
for example because privacy of machine-to-machine communication may not be an
issue, but in the case it is, it’s easily fixed by padding the plaintext to a fixed length,
much like block ciphers do. Further discussion on plaintext length obfuscation in
Section 6.3.

On the other hand, if no padding is applied, the ciphertext being no longer than
necessary allows the usage of shorter CAN FD payloads, reducing thus the com-

munication overhead.

Ascon has some intrinsic properties due to its design, which are of of general interest
for the overall system. These include some resistance to timing attacks and side
channel attacks; Ascon is also very easy to implement and quite performant in
software.

Finally, Ascon was developed by TU Graz, thus the simplest motivation was to
use an “in-house” developed algorithm to further see how well it can be applied.

45

5 Software implementation design choices

In this section we briefly tell the history of the development process, explain how the
Hazelnet implementation of the protocol looks like, and motivate some software archi-
tectural decisions.

5.1 Design and development cycles

From a personal point of view, the writing of the protocol specification and the coding of
the reference implementation required wearing many hats: security architect, protocol
designer, software architect, and software developer. The most important self-imposed
rule of the process was wearing strictly one hat at the time and, only once a task was
completed, switch to another role, look at the result from a different perspective to find
improvements, go back to the original hat to apply the fixes, and repeat the feedback
cycle, like a one-person agile process.

For instance, one early version of the CBS protocol specification was focused on a large
flowchart containing all possible choices and checks each party is supposed to perform.
The mere size of the flowchart quickly proved to be ineffective to follow and understand
when trying to write the software implementation of the protocol. This led to a complete
overhaul of the protocol specification, using a more chronological format, explaining what
each party does from booting up until powering down.

5.2 Why making a reference implementation?

A core part of the design of any kind of communication protocol, may it be cryptographic
or not, is understanding how it could be implemented, whether it’s easy to do it right
and how usable would the API of an implementation be. Creating a reference implemen-
tation is useful for all that, but also provides a testing playground to see if the protocol
even works in the first place, allows to quickly explore new functionalities, and finally,
represents a secondary reference for the protocol specification. This is particularly useful
when the theoretical specification is ambiguous or incomplete, so the reference software

47

implementation could be inspected to resolve the ambiguity.

5.3 Hazelnet library

The library implements the CBS protocol. Instead of acting as a layer in the com-
munication stack, wrapping security operations in a transmission and reception API,
Hazelnet acts closer to a cryptographic library: it processes data passed to it by the
application and returns the result to the same application, rather than exchanging it
with neighbouring communication layers.

The user of the library must handle the physical transmission and reception manually
as this library only builds the messages to transmit and unpacks the received ones. This
is done to guarantee better portability across systems. The internal library state keeps
track of ongoing handshakes, timeouts and other events for each Group. At the same
time, such design allows multiple co-hosted applications to run concurrent instances of
the library state, securing the messages independently of each other in case they don’t
trust each other

The library uses standard C11 code and is hardware-independent. The compile targets
for a desktop OS add some optional features like heap memory allocation and use the
time and TRNG functionality the OS provides. The any-platform version expects the
user to provide the memory to operate on and function pointers to custom timestamping
and random-number-generators of the used platform, ready for embedded systems.

5.3.1 Hazelnet library requirements

The protocol has been deliberately designed in a way to minimise the requirements
for software implementations. Specifically, the need for synchronised clocks across all
devices has been removed from the very start, because it’s hard to achieve on a multi-
master shared bus, the arbitration process being one of the reasons why. Timestamp
nonces were replaced by counter nonces. Time functions are still required to check for
timeouts and for wait/sleep periods, but no synchronisation to external reference clocks
or between devices is needed.

The requirements thus are:

e A minimal C99 or C11 standard library, where heap-memory allocation (malloc ()
and free()) is optional.

o A true-random number generator (TRNG) — which requires dedicated hardware.

48

Hazelnet 1 Hazelnet 2

App 1 App 2

[I

|

TX queue Transport (optional) RX queue

CAN-FD driver

il

Figure 5.1: Two applications co-hosted on the same device can use different instances of

CAN bus

the library state to independently secure the messages, even from each other,
so they can share message queues. An incoming secured message popped
from the queue is dispatched to the proper application, which passes it to its
Hazelnet instance and obtains it back decrypted and validated. Vice-versa,
the application calls the library on a plaintext message to get the message
in a secure format, ready to be transmitted, and places it into a shared
transmission queue.

e A local, relative, timestamping function with millisecond accuracy, like a tick-
number function. It does not require to be an absolute wall-clock, as only local
time differences are computed. Something as simple as the processor clock cycle
counter suffices.

The last two points (TRNG and time function) are supplied as function pointers to the
library, allowing the user to wrap any function that is available on the current platform
into the format Hazelnet needs. The library has the two functions already prepared
and are selects them automatically when running on a desktop operating system, while
for embedded systems an adapter must be prepared manually. In the Hazelnet Demo
Platform the RTOS current-tick function is used as time routine, while the hardware
TRNG is the one the CSEc hardware security module of the S32K144 microcontroller
provides.

49

Hazelnet

%9

%

TX «——&" App

Figure 5.2: Diagram of application-library interaction on transmission: the application
provides the plaintext data to the Hazelnet library, which returns it to the
application encrypted, authenticated, and packed into a CBS message for-
mat, ready to be transmitted. The application has then only to forward it
as-is to the transmission function or queue.

5.3.2 Hazelnet library architecture

Hazelnet has comprehensive software documentation with Doxygen!, it’s modular and
easy to compile using CMake, abstracting away from a specific Make-tool, C compiler,
and linker.

The library’s internal code is split into 3 sections: code specifically used only by the
Client role, code for the Server role and code shared by both. The overall software
architecture tries to map each API function to one source code file with that function
implementation and optionally some static functions.

The API is composed in a similar manner: the hzl.h header file is required for all roles
and then the user can include hzl_Client.h or hzl_Server.h depending on the role
they are choosing. The headers contain a very small amount of functions, as most of the
lines of code in them are used for data structures definitions and documentation. Each
API function returns an error code from an extensive enumeration that can indicate
every possible error that may occur even very deep in the library’s internal code.

We believe that the best way to explain what a library does, is taking a peek at its API,
which in this case is very compact. A Client has the following functions available in
their API (arguments and return types are omitted for brevity):

e hzl ClientInit() to initialise an instance of the library state, which should hap-
pen on boot or awakening from a low-power state.

e hzl ClientDeInit() being the complementary security-cleaning of the state be-

"https://thematjaz.github.io/Hazelnet/

50

https://thematjaz.github.io/Hazelnet/

Hazelnet

~
~
~

App "+—— RX

Figure 5.3: Diagram of application-library interaction on reception: the application
obtains a secured, encrypted, authenticated message from a reception func-
tion/queue and forwards it as-is to the Hazelnet library. Hazelnet validates
the message’s format, authenticity, freshness and decrypts it, providing the
plaintext data back to the application — or the proper error code if something

went wrong.

fore a power-down or low-power state.

e hzl ClientBuildRequest() to start a handshake: builds a Request message ready
to transmit to the Server, in order to obtain the short term key of a specified Group.
The transmission must be performed by the Hazelnet user (the application).

e hzl ClientProcessReceived() is a function which should be called for every
received message. If it’s an internal one, like a Server Response or Session Renewal
Notification, it will be automatically processed with no application data output
for the user, optionally providing an automatic internal message for the user to
transmit. If it’s application data, it will be decrypted, validated, and passed to
the user in plaintext.

e hzl ClientBuildSecuredFd() can be used to prepare secured application data
messages from plaintext data, ready to be transmitted by the user.

e hzl ClientBuildUnsecured() analogously packs the application data for trans-
mission without any cryptographic security.

The Server has a very similar API:

¢ These four functions behave exactly like their Client counterpart:
— hzl ServerInit()
— hzl_ServerDelInit()

— hzl ServerBuildSecuredFd()

o1

— hzl ServerBuildUnsecured()

e hzl ServerProcessReceived() also processes any received message, while also
automatically preparing Responses for the incoming Requests.

e hzl ServerForceSessionRenewal() can be used to manually trigger a new ses-
sion start right now instead of waiting for its expiration.

5.3.3 Hazelnet limitations

Hazelnet does not support SADTP message formats, thus large secured application data
messages that travel over a transport protocol. This feature was skipped as not critical
to test the protocol, being extremely similar to unfragmented SADFD messages.

Hazelnet is not a thread-safe library, thus a single library state-structure should not be
used concurrently from multiple threads or RTOS tasks, but two distinct state-structure
can coexist without issues (e.g., for two independent applications on the same host
device). Support for thread-safety would require either a much more refined design or
usage of locks, which makes the library harder to work cross-platform, given that every
OS has different locking APIs. Support for this feature was dropped, as not critical in
the initial versions to get the system running. The main drawback is that processing of
received messages and building of messages to transmit cannot happen safely in separate
tasks or threads of the same application.

The clear goal was to get a working, unit-tested, clear, well-documented implementation
of the CBS protocaol first, that is easy to understand and use rather than optimised for
all features, performance, and use-cases.

5.4 LibAscon library

Before this thesis was started, the LibAscon implementation was created as an inde-
pendent academic exploration of the Ascon cipher in order to provide a more flexible
API than the reference implementation® developed by the Ascon designers themselves.
LibAscon was then released as a stand-alone open source library, and listed among other
implementations on the official Ascon website [15].

During the development of this thesis, Ascon was evaluated as an excellent cipher choice
(see Section 4.11 for details) and thus the LibAscon implementation was picked, further
tested in a practical project, and improved to be used specifically within the Hazelnet

*https://github.com/ascon/ascon-c

52

https://github.com/ascon/ascon-c

library, while still staying a stand-alone generic implementation that could be used in
any project.

5.4.1 Why not using the reference implementation?

The reference C implementation implements only the offline encryption or hashing
paradigm, i.e., its functions can operate only on a contiguous array of bytes already
and completely available in memory. While this simplifies the reference Ascon imple-
mentation by a lot, the user of it must prepare the entire message to process in advance,
which may be unfeasible or not elegant.

In the initial drafts of the Hazelnet library, one of the ideas was to encrypt/decrypt the
CAN FD frames containing fragments of a large SADTP message in a streaming manner.
The sender secures a large message that must be split into many CAN FD frames, but
does so iteratively: as the first plaintext fragment is created, that fragment is encrypted
and transmitted, then the next fragment is extracted from the large message, encrypted,
and transmitted, and so on, until the final fragment is packed into a CAN FD frame
alongside the tag (MAC) of the entire long message. The receiver would decrypt the
fragments as they would come to avoid long blocking decryption times at the end and
authenticate the tag once the final fragment is received. An Init-Update-Final API for
the Ascon cipher was a requirement for such an implementation, allowing to operate on
the data online, one chunk at the time, as it became available. However, this streaming
approach was later deemed a nice-to-have optimisation step, which is not critical to
achieve a working library. It remains a potential feature for a future version of Hazelnet.

Nevertheless, it’s the opinion of the Hazelnet developer that the Init-Update-Final API
for Ascon operations makes the code more legible and elegant, compared to organising
all data in a buffer of specific format in advance to process it in one go. The code
clarity issue, combined with the streaming implementation mentioned in the previous
paragraph (although later abandoned), were the reasons for picking LibAscon over the
reference Ascon implementation.

5.4.2 LibAscon properties

LibAscon tries to be a comprehensive, modern-C package-deal, where all variants of the
Ascon cipher and hashing functions are neatly collected and available both in offline and
online modes. The idea was to expand on the reference implementation in terms of API,
thus getting closer to interfaces similar to other cryptographic libraries (e.g., OpenSSL,
LibSodium).

93

We wanted the Ascon cipher to become a developer-friendly tool rather than an aca-
demic algorithm, bringing it closer to the professional software engineering world. The
LibAscon implementation has comprehensive software documentation with Doxygen?,
it’s modular and easy to compile using CMake, abstracting away from a specific Make-
tool, C compiler, and linker.

LibAscon was never meant to be a deeply-optimised implementation or a security-
hardened one. The reference repository contains specialisations of the code for different
architectures and processor bitness, so there was no need to do it again. Security-
hardening operations, such as masking, was not applied due to lack of knowledge in the
sector. LibAscon instead focuses on being simple, understandable, general-purpose, and
fully-portable.

LibAscon achieves the same performance as the official Ascon reference implementation
on 64-bit machines, when compiling both in Release mode.

5.4.3 Features introduced by LibAscon

LibAscon builds on top of the reference implementation, extending it with some minor,
but useful, additional functionalities:

¢ The already-mentioned online processing, which allows to encrypt, decrypt or hash
the data one chunk at the time, even if it’s not contiguous in memory.

o Arbitrary tag length for authenticated encryption: LibAscon’s encryption routines
can generate Message Authentication Codes of user-specified size. Ascon’s refer-
ence AEAD design provides 128-bit tags; shorter versions are equivalent to trunca-
tions of this tag, while longer ones are a LibAscon extension of the algorithm using
the same sponge-squeezing technique as for the extraction of an arbitrary-length
digest for the Ascon-XOF hashing function.

o The AEAD tag may be provided to a separate location (separate pointer), not
concatenated to the ciphertext.

e Encryption and decryption can also be performed in-place, without the need of a
second output buffer. The plaintext is thus replaced with the ciphertext or vice-
versa. While this functionality should work also on the reference implementation,
by the looks of the source code, LibAscon contains explicit testcases for it.

Shttps://thematjaz.github.io/LibAscon/

54

https://thematjaz.github.io/LibAscon/

5.4.4 Testing

LibAscon was tested using the official Ascon test vectors? to ensure compatibility with
the reference implementation. A variety of fixes were applied to the code so it compiles
without compiler warnings when using the most common compilers (GCC, LLVM-Clang,
MSVC-CL) with most warning flags activated. The continuous integration pipeline in
the repository hosting web-service allowed for quick compilation error checks and ensured
the tests were passing on multiple platforms.

5.5 Hazelnet Demo Platform

The final deliverable of this thesis is a practical demonstration platform of the CBS
protocol being used by microcontrollers actually communicating over the CAN bus.

5.5.1 Used hardware

The platform is made of 2, 3, or 4 microcontroller boards, each acting as a CBS party:
the Clients (up to 3) are named Alice, Bob and Charlie, the last device is the Server.
The boards are NXP S32K144EVB (evaluation boards of the S32K144 microcontroller)
and they are connected via a simple star-shaped, high-speed CAN FD bus. The Server
board provides the 120 € resistor line-termination on the board itself. The boards are
powered using 12 V DC.

The choice for the microcontroller boards model was straight-forward: other than being
obviously an in-house product, the NXP company team the thesis author was part of
at the time of writing was already using them for a plethora of experiments, so access
to senior engineers for support on using them was plenty. Simultaneously, they are
automotive-certified products, support CAN FD and have a hardware TRNG module.

To sniff the bus traffic from a laptop and display the secured data being exchanged, a
PEAK System PCAN-USB FD adapter was employed, for the same reasons as for the
S32K144 microcontrollers.

4https ://github.com/ascon/ascon-c/blob/master/crypto_aead/ascon128v12/LWC_AEAD_KAT_128_
128.txt and analogous KAT (Known Answer Test) text files available in different locations in the
reference implementation’s repository for the various cipher and hashing types.

95

https://github.com/ascon/ascon-c/blob/master/crypto_aead/ascon128v12/LWC_AEAD_KAT_128_128.txt
https://github.com/ascon/ascon-c/blob/master/crypto_aead/ascon128v12/LWC_AEAD_KAT_128_128.txt

E
=]
&
g
*
=
®
=
k]
&
=2
N
=
k)
=
|
o
=
o]
°
°
=
]
N
<
sk

Figure 5.4: Photo of the Hazelnet Demo Platform’s hardware: three NXP S32K144EVB
microcontroller boards represent the parties (from left to right) Alice, Bob
and Server. An out-of-picture power supply provides 12 V DC and the
ground to the Bob board’s right side with a black coaxial plug. In the
bottom half of the picture, the orange twisted-pair wires are the CAN bus,
the white wire is the 12 V DC power distribution, and the black wire is
the ground. On the right of the picture, a PEAK System PCAN-USB FD
adapter (the black box) is sniffing the traffic on the bus and providing it for
a laptop/desktop computer to inspect, as an attacker would.

5.5.2 What the demo does

The devices are programmed to securely exchange dummy 8-bit integer value they in-
crement, every time they transmit it. This value is distinct from the message counter
nonce, as each device has a different starting value of this 8-bit integer. Simultaneously,
the devices log their activity with unsecured (UAD) messages on the bus, interleaved to
the secured ones (SADFD), so it’s easier to see what they are doing just by looking at
the log of CAN FD messages. There is no debug logging via other peripherals.

On boot, each device logs their firmware and library version; the Server initialises a
Session, while the Clients request the Session data to the Server. They then start
broadcasting their integer value to everyone else on the bus, padded to a 128-bit block,
using secured messages. FEach device, upon receiving the message and decrypting it, it
publishes its content yet again on the bus, now using an unsecured, plaintext message,
which is ignored by everyone else. This last step is for demo purposes, so that it can

o6

be clearly seen in the logs who has received the message and successfully processed it
— clearly no real-world application should echo security-critical data in plaintext back
through the channel used to transfer it securely mere instants before.

Each Session has a preconfigured duration of 30 seconds, so a session renewal can be seen
even with a relatively-short interaction with the demo. Again, clearly a real-world appli-
cation would normally use much longer Sessions to reduce overheads in the distribution
of the short term keys. The Server renews the Session after this timeout, notifying the
Clients, who request the new short term key immediately.

In case the devices get out-of-sync for any reason, their communication with the other
parties will start to raise security warnings (invalid counter nonces and message tags).
Once the device’s security error counter reaches a certain threshold (5 by default), their
application layer decides to synchronise them again: Clients would transmit a Request
for the Session Information, the Server a Session Renewal Notification instead to trigger
Client Requests.

5.5.3 Firmware structure

The firmware differs only slightly between the Server and Client microcontrollers on the
demo; they are otherwise structured and initialised identically. The firmware is based on
the FreeRTOS® real-time operating system to provide some starting abstraction of the
hardware and some handy functionality such as queues and clock ticks, although only a
single task is employed.

The CAN driver is tasked to enqueue the received CAN FD frames upon receptions with
a callback directly within the interrupt service routine that signals a reception. While
not the best approach for high-intensity messaging applications, it’s simple enough to
implement and works for a basic demonstrator.

The only RTOS task is the initialised application, interacting with a Hazelnet instance.
The devices have hardcoded configurations, again being the simplest solution for a
demonstrator.

5.5.4 Firmware size

The Table 5.1 shows the size of the compiled firmware for both Client and Server roles.
Both are optimised for size. The NXP S32K144 microcontrollers used have a 32-bit
ARM Cortex M4F CPU using the Thumb instruction set.

https://freertos.org/

57

https://freertos.org/

Client Server
text .data .bss | .text .data .bss
LibAscon 2868 0 0| 2868 0 0
Hazelnet (incl. LibAscon) 6608 0 0| 6698 0 0
Hazelnet example config. 0 20 192 0 24 260
Example application (incl. config.) | 2046 20 302 | 1930 24 376
Entire firmware 33008 792 2784 | 32728 796 2860

Table 5.1: Sizes of components of demo platform firmwares optimised for size. All values
are in bytes (decimal) and only include the used source code, i.e., the sizes
are those appearing after the linker discarded unused sections.

The by-far largest part of the firmware are platform-enabling base libraries: hardware
drivers (CAN, RGB LEDs, buttons, TRNG, memory regions, etc.), C standard library,
RTOS (task, interrupts, queues, timers, etc.), startup code, and so on.

Clearly, the example application which exchanges only dummy messages and its sim-
plistic configuration are not a realistic representation of what an industrial use-case
would do, so it’s size should not matter that much. The important detail is how much
additional space the Hazelnet library code consumes.

Neither LibAscon nor Hazelnet libraries consume static memory: their contexts and
buffers need to be declared or allocated by the library user. This may be on a static
memory location, a declaration on the stack, a heap allocation, or even a flash memory
page. This choice gives the user complete flexibility.

It has to be noted that the LibAscon library is not mandatory: the CBS protocol and
Hazelnet could also work with a different cipher such as AES, which is often implemented
in hardware. That could reduce the code size even more, assuming the drivers for said
hardware implementation are not too heavy.

5.5.5 Laptop software

The PEAK System PCAN-USB FD adapter allows a laptop to inspect the traffic on the
CAN bus. A small Python script is used to receive the CAN messages, unpack their
content according to the format of CBS messages, and log them to the standard output
in a human readable format. It’s worth underlining that the laptop only reads the data
from the bus for logging and visualisation purposes, never transmits anything, and is
unable to decrypt the data because it has no cryptographic keys at all.

This logging script is not published along the thesis, as it based on an extensive company-

o8

proprietary Python wrapper of the PCAN-USB FD API, called PyPCAN. This wrapper
is, incidentally, also a work of the same author of this thesis, predating it by a few years.

An example on how the log looks like is available in Section 5.5.7.

5.5.6 Interacting with the demo

Each board can be interacted with using its hardware buttons:

o Pressing the button 1 (marked SW3 on the board itself, the one closest to the
RGB LED) on Client boards deactivates the Client. This is to simulate either a
power-down or entering a low-power state where the Client does not communicate
over the bus any more. This button does nothing on the Server, which should
never power-down as per CBS requirements.

o Pressing the button 2 (marked SW2 on the board itself, the one closest to the
potentiometer wheel) forces a resynchronisation of the Session Information: on a
Client it triggers the transmission of a new Request message to obtain (again) the
short term key; on the Server it triggers the renewal of the Session and subsequent
transmission of a Session Renewal Notification message.

o Pressing the reset button (marked SW5 and RESET on the board itself, the
one closest to the micro-USB connector) clearly reboots the device abruptly. For
Clients this triggers a new Request message, just like when pressing button 2. For
the Server this causes an unexpected loss of the Session Information, because the
Server is never supposed to power-down.

The RGB LED is used to show different states of the devices to the people interacting
with the Hazelnet Demo Platform. The most important colours are:

e White for the Server that is waiting for the first Client to transmit a Request
message after the Server boots up.

e Cyan for Clients that are in the middle of a handshake, waiting for a Response
message.

e Magenta for the Server that is waiting for Clients to transmit a Request message
during a Session renewal.

e Green for successful processing of received Secured Application Data messages.
e Red for security errors, such as invalid message tags.

e Cycling through the colours red-green-blue-off indicates the Client was virtually

99

powered-down by pressing the button 1.

e Any two colours alternating periodically indicate a fatal, unrecoverable error, such
as the CAN bus wires being disconnected.

5.5.7 Example CAN log

Here we present a version of the CAN bus traffic log that we would observe when running
the demo. The CBS messages are unpacked and their inner fields are shown in a more
human-readable format.

The first column of each log record is a timestamp in seconds, here indicated as relative
to the start of the demo for simplicity. The GID, SID and PTY fields are the CBS
Header fields of each message. The UAD message denote logging message with plaintext
data used to explain what the demo is doing. The PL field is the payload of the CAN FD
frame, containing either a text message or binary fields, which are also unpacked and
listed in hexadecimal formats.

On startup we see the devices notifying they booted up alongside with their firmware
version.

0.870 | Starting HZL sniffer

0.878 | GID=0 | SID=BOB | PTY=UAD
PL=INFO: initialised Hazelnet Demo Platform v1.1.0

0.879 | GID=0 | SID=SERVER | PTY=UAD
PL=INFO: initialised Hazelnet Demo Platform v1.1.0

0.881 | GID=0 | SID=ALICE | PTY=UAD
PL=INFO: initialised Hazelnet Demo Platform v1.1.0

Immediately afterwards, the Clients transmit Request messages to the Server, which
responds within a few milliseconds:

0.881 | GID=0 | SID=BOB | PTY=REQ
PL=reqnonce=0x31302f2e2d2c2b2a,
tag=3dc2138ef2553fdb

0.883 | GID=0 | SID=ALICE | PTY=REQ
PL=reqnonce=0x31302f2e2d2c2b2a,

60

tag=b999eabe79615b28

0.885 | GID=0 | SID=SERVER | PTY=RES
PL=client_sid=2,
ctr=0x000000,
resnonce=0x81807f7e7d7c7b7a,
ctext=4232c2e190903b483c65cbb5a9355636d,
tag=38b77bc962d56eb913dc5c01ea82d6c8

0.890 | GID=0 | SID=SERVER | PTY=RES
PL=client_sid=1,
ctr=0x000000,
resnonce=0x8988878685848382,
ctext=e4badeafec1788c34d7ed4ecbf362f69,
tag=0e23cc462832a8e3843b9da46e08bdab

Then all devices start to periodically transmit dummy encrypted application data, which
is in this case just a counter, to all other parties. The counters start with 0xA0 for Alice,
0xBO for Bob, 0xCO for Charlie and 0xFO for the Server. The receiving party decrypts
the message and transmits it in plaintext back on the bus. Secret counter is the first
byte of the decrypted message, i.e., the dummy value being exchanged by the Parties.

The Server transmits its first value 0xFO encrypted, which Alice and Bob receive and
publish again decrypted so we can see they processed it properly:

1.291 | GID=0 | SID=SERVER | PTY=SADFD
PL=ctr=0x000000,
ptlen=16,
ctext=10fbe84975d0faee590d2b023d31cfbl,
tag=20998faedfbb63ce

1.293 | GID=0 | SID=ALICE | PTY=UAD
PL=RX GID=00,SID=00,Secret counter=FO

1.294 | GID=0 | SID=BOB | PTY=UAD

PL=RX GID=00,SID=00,Secret counter=FO

Similarly, after about a second, Alice decides to transmit its own counter:

61

2.496 | GID=0 | SID=ALICE | PTY=SADFD
PL=ctr=0x000001,
ptlen=16,
ctext=1098£96da8667fd3dafc0dc116c3£0c7,
tag=al19b80aa6b1078e8

2.498 | GID=0 | SID=SERVER | PTY=UAD
PL=RX GID=00,SID=01,Secret counter=A0

2.499 | GID=0 | SID=BOB | PTY=UAD
PL=RX GID=00,SID=01,Secret counter=A0

After about 30 seconds since the start, the Server is programmed to renew the Session.
The Server transmits a Session Renewal Notification message, triggering the Clients to
transmit Requests once again and obtain new Responses.

32.887 | GID=0 | SID=SERVER | PTY=REN
PL=ctr=0x000020,
tag=a017d60£ffb1c6430c85e3c625ae7£6d6

32.892 | GID=0 | SID=ALICE | PTY=REQ
PL=regnonce=0x3938373635343332,
tag=f1dd5d6940a99670

32.893 | GID=0 | SID=BOB | PTY=REQ
PL=reqnonce=0x3938373635343332,
tag=98bf21464798e55a

32.896 | GID=0 | SID=SERVER | PTY=RES
PL=client_sid=1,
ctr=0x000000,
resnonce=0xal1a09f9e9d9c9b9a,
ctext=edcebba74cc87164d486853fb7b%ael2,
tag=49e8bc98015£72a40e8497£fa01420171

32.900 | GID=0 | SID=SERVER | PTY=RES
PL=client_sid=2,
ctr=0x000000,

resnonce=0xa9a8a7ab6abada3a2,

62

ctext=faccaadc37c445fec2cb975£d7£05bdd,
tag=e8295£82a84e85d3b1db5516b6£76c78

63

6 Potential protocol extensions

No product is ever perfect and the same is true also for the CBS protocol and any of
its implementations. Additional extensions and new features could be added to CBS,
may it be in new minor versions by using some reserved fields and values, or by breaking
compatibility and creating CBS v2.0. Regardless of the way, here we list some of the
ideas that could take place, if the project will continue existing or is ever expanded by
further researchers and developers. Some of these points relate to what mentioned in
Section 2.2.

6.1 Perfect Forward Secrecy (PFS)

PFS is the property of cryptographic protocols that ensure the confidentiality of the
encrypted data protected by short term keys even if the long term keys are leaked or
compromised in the future. It is a powerful property for the privacy-robustness of the
protocol.

For CBS, because the short term keys need to be distributed to multiple Clients and
each of them must see the same key, a way to make it independent from the long term
key is wrapping it using an ephemeral key in the Response message rather than using
the long term key itself. The ephemeral key is used just for this wrapping and it’s
agreed on the fly as the Request comes using the Diffie-Hellman (DH) protocol. Both
parties still use their long term keys as a means of authentication of the messages to
avoid Man-in-the-Middle attacks. Naturally the Request and Response messages format
would change.

For instance, the Request message would now provide, alongside the random nonce (still
useful to prove the Response freshness), also the Client’s DH public key. Other public
DH parameters such as base and modulus could be included in the message or be pre-
configured in both parties. The Server would then compute the DH-agreed ephemeral
key on the fly, wrap the short term key with said ephemeral key, still use Client’s random
nonce to prove the Response freshness, and finally authenticate (but not encrypt) the
entire Response message using the shared long term key.

65

The computational performance would clearly take a hit compared to using only sym-
metric cryptography. Using an elliptic curve DH implementation would certainly help,
but the handshake is expected to be slower than with the pure-symmetric version. The
two types of handshake might also coexist on the same bus, with some devices using
the symmetric and others the PFS version, especially in different Groups with varying
security requirements.

6.2 Automatic pairing of new Clients or a new Server

CBS long term keys are assumed pre-installed in the Clients and the Server, but a
protocol extension could be added to allow a new party to perform a pairing sequence
over the CAN bus, generate, and agree on a long term key to use from there onwards.
Such pairing procedure would speed up the physical replacement of faulty devices as
there would be no need for a human operator to generate and install the long term keys
manually on each party. As with the previous Section 6.1, Diffie-Hellman could also be

used to achieve this goal.

While such a pairing handshake based on asymmetric cryptography may be slow, it is
a configuration-time operation in an assembly or repair workshop, so we can assume a
waiting time for a human operator of few seconds does not impact their work. At run-
time, the devices would still use only symmetric cryptography — excluding the extension
mentioned in the previous Section 6.1.

The problem with DH key agreements is the verification of the identity of the interlocu-
tor: how can the Client be sure they have just agreed on a key with the Server and not
some other Client or a malicious device on the bus impersonating the other party? The
two parties performing the DH handshake would need some kind of shared knowledge,
maybe a pre-installed certificate from their manufacturers to sign the DH exchange with.
This is a chicken-and-egg chain of trust scenario that must be carefully planned; if it
falls back to a human operator verifying the exchange after installing a new device, there

is no advantage.

6.3 Hiding the plaintext length

While probably not of high interest for machine-to-machine communication, there might
be a need to hide the exact length of the plaintext from any passive sniffer of the bus
traffic for privacy reasons. A very simple way to do so is padding the plaintext so the
ciphertext length is rounded up to the next predefined block size, even when not using

66

a block cipher. For instance, plaintext could be only multiples of 16 bytes in size.

CBS could be altered in order to encrypt the concatenation length || plaintext || padding
rather than just the plaintext; the ptlen field could be thus removed from the SADFD
message altogether, as the amount of blocks (0-3) could be inferred from the CAN
frame’s Data Length Code field. For SADTP messages the ptlen could also be removed
as the length in blocks of the first encrypted fragment contained in the first CAN frame
could also be inferred from the Data Length Code; from there on, decrypting this frag-
ment would reveal the true length of the plaintext and thus the amount of fragments
(CAN frames) that follow could be deduced from that.

An alternative solution that could already take place now without changes to the existing
CBS protocol, requiring the application layer to prepare the data to be exchanged in the
length || plaintext || padding format instead, forcing such a padding to achieve a multiple
of some selected block size, e.g., 16 bytes.

6.4 Increase SAD tag length

The length of the tag (MAC) field of SADFD messages is defined to be 64 bits (8 bytes)
long, so the message can contain up to 3 ciphertext blocks of 128 bits (16 bytes) each.
A possible extension, fully backwards compatible, may be to extend the length of the
tag field, if the CAN FD frame has some free space available, even if it’s just a single
byte, up to 256 bits (32 bytes) of tag length, if resistance against Grover’s algorithm is
a requirement.

The SADTP tag length may also be extended in an analogous manner while maintaining
backwards compatibility.

6.5 Transmitting-only parties and per-party counter nonces

Some CAN bus nodes may be mostly focused on transmitting their data and may not
listen for messages exchanged between every other node to spare on energy and make
them cost-effective, as there is no need for heavy processing power for just a few trans-
missions. For example, a bus-connected temperature sensor that periodically transmits
the reading should not need to listen to any incoming message.

CBS assumes all parties listen to the messages transmitted within the Groups they are
part of, so they can keep track of what was the latest used counter nonce. Naturally, a
transmitting-only party would quickly fall behind the rest and its messages would get

67

discarded as too-old.

A potential solution could be using per-party rather than per-Group counter nonces.
By doing so, a transmitting-only party Alice can keep on transmitting and incrementing
its own counter nonce locally without the need to receive anything from the bus, with
the exception of any messages from the Server. The drawback is that all other parties,
which are interested into hearing from Alice, must keep track of Alice’s counter nonce.

A solution of this kind is harder to scale, as most parties may have to receive and track
counter nonces from most other parties. While initially explored as a CBS feature, it was
abandoned because of heavier memory requirements (a data structure holding a 3-byte
counter nonce per party and per Group rather than just per Group), but that does not
mean it may not be useful for some applications.

6.6 Server replication

One may wonder how could the availability of the Server be ensured, because that’s an
obvious a weak spot of a centralised system. Luckily, this is not a new problem; any
database, DNS, email, web server is facing it daily. The solution is usually redundancy:
we need to set up two (or even more) Servers on the same bus. One is picked as primary,
while the second is a hot-standby replica, to borrow the terminology from the database
management system world.

The primary Server needs to share each newly generated short term key with the replica,
immediately after generating it, while the replica needs to constantly monitor if the
primary is still available, maybe with a heartbeat message. If the primary goes offline,
the replica self-promotes and starts to act as the Server, replying to Clients and renewing
Sessions, until the primary comes back online.

While the CBS protocol does not cover this functionality at the time of writing, it could
be a potential extension to define CBS messages for synchronising wrapped short term
keys between primary and replica (and vice-versa after a crashed primary comes back
online) and heartbeat messages to verify availability.

68

7 Conclusion

7.1 Summary

The CAN Bus Security protocol offers a lightweight solution to secure the bus traffic
against third parties reading the message contents, transmitting spoofed messages, or
replaying past ones. CBS is based on a simple and well-known system architecture,
supports fragmented and unfragmented messages with a small message and handshake
overhead. Its protocol specification has been carefully crafted to be flexible to fit the
needs of the target system while containing all required details to avoid ambiguities.

The Hazelnet library offers a portable, detailed, and highly documented reference imple-
mentation, that should be quick to set up in existing projects to upgrade their security
thanks to the library’s minimal API. Hazelnet has a small footprint in terms of code size
and overall system performance. Multiple applications or tasks on the same device may
use it to protect their messages even from each other. Finally, a demo of the library
usage is also available.

7.2 Final thoughts

This project was composed by many steps: designing a security protocol from scratch,
writing a formal specification for it, creating a reference software implementation, the
cryptographic library for it, a demonstrator platform to showcase the result. Writing the
documents in an understandable manner, covering all details, software documentation,
testcases, build systems all took a lot of time to organise, but they are what make the
project complete.

By releasing the specification and implementation software code to the public with per-
missive licenses for both, the hope is to push more industries that are currently using
unprotected CAN bus communications to upgrade the security level in their products
with an off-the-shelf solution without paywalls.

This thesis was done in collaboration with NXP Semiconductors Austria GmbH & Co
KG.

69

Attachments

ATT-1 CAN Bus Security protocol specification. Protocol version 1.3, document revision
4.

— Available as embedded attachment within this PDF document.
— Available on: https://matjaz.it/cbs/

ATT-2 Hazelnet library, open-source reference software implementation of the CBS pro-
tocol.

— Repository: https://github.com/TheMatjaz/Hazelnet
— Generated documentation: https://thematjaz.github.io/Hazelnet/

ATT-3 LibAscon library source code, open-source software implementation of the Ascon
cipher used within Hazelnet.

— Repository: https://github.com/TheMatjaz/LibAscon
— Generated documentation: https://thematjaz.github.io/LibAscon/

ATT-4 Hazelnet Demo Platform, open-source software example application of the Hazelnet
library.

— Repository: https://github.com/TheMatjaz/HazelnetDemoPlatform

71

https://matjaz.it/cbs/
https://github.com/TheMatjaz/Hazelnet
https://thematjaz.github.io/Hazelnet/
https://github.com/TheMatjaz/LibAscon
https://thematjaz.github.io/LibAscon/
https://github.com/TheMatjaz/HazelnetDemoPlatform

Bibliography

1]

Car Connectivity Consortium, Digital Key, release 3.0. URL: https://global-
carconnectivity . org/wp- content /uploads/2021/11/CCC_Digital _Key _
Whitepaper_Approved.pdf (visited on 2021-11-21).

ISO 11898-1:2015, Road vehicles — Controller area network (CAN) — Part 1: Data
link layer and physical signalling. URL: https://www.iso.org/standard/63648.
html (visited on 2019-03-09).

ISO 11898-2:2016, Road vehicles — Controller area network (CAN) — Part 2: High-
speed medium access unit. URL: https://www.iso.org/standard/67244 . html
(visited on 2019-03-09).

ISO 11898-3:2006, Road vehicles — Controller area network (CAN) — Part 3: Low-
speed, fault-tolerant, medium-dependent interface. URL: https://www.iso.org/
standard/36055.html (visited on 2019-03-09).

I1SO 11898-4:2016, Road vehicles — Controller area network (CAN) — Part J: Time-
triggered communication. URL: https://www.iso.org/standard/36306 . html
(visited on 2019-03-09).

CAN bus, Wikipedia entry. URL: https://en.wikipedia.org/wiki/CAN_bus
(visited on 2019-03-09).

CAN FD bus, Wikipedia entry. URL: https://en.wikipedia.org/wiki/CAN_FD
(visited on 2019-03-09).

CAN FD - The basic idea. URL: https://www.can-cia.org/can-knowledge/
can/can-fd/ (visited on 2019-03-09).

ISO-TP, Wikipedia entry. URL: https://en.wikipedia.org/wiki/IS0_15765-2
(visited on 2021-11-21).

IS0 15765-2:2016, Road vehicles — Diagnostic communication over Controller Area
Network (DoCAN) — Part 2: Transport protocol and network layer services. Stan-
dard. Geneva, CH: International Organization for Standardization, 2016-04. URL:
https://www.iso.org/standard/66574.html (visited on 2019-03-09).

73

https://global-carconnectivity.org/wp-content/uploads/2021/11/CCC_Digital_Key_Whitepaper_Approved.pdf
https://global-carconnectivity.org/wp-content/uploads/2021/11/CCC_Digital_Key_Whitepaper_Approved.pdf
https://global-carconnectivity.org/wp-content/uploads/2021/11/CCC_Digital_Key_Whitepaper_Approved.pdf
https://www.iso.org/standard/63648.html
https://www.iso.org/standard/63648.html
https://www.iso.org/standard/67244.html
https://www.iso.org/standard/36055.html
https://www.iso.org/standard/36055.html
https://www.iso.org/standard/36306.html
https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/CAN_FD
https://www.can-cia.org/can-knowledge/can/can-fd/
https://www.can-cia.org/can-knowledge/can/can-fd/
https://en.wikipedia.org/wiki/ISO_15765-2
https://www.iso.org/standard/66574.html

[11]

74

Roger M. Needham and Michael D. Schroeder. “Using Encryption for Authen-
tication in Large Networks of Computers”. In: Commun. ACM 21.12 (1978-12),
pp- 993-999. 1ssN: 0001-0782. DOI: 10.1145/359657 .359659. URL: https://doi.
org/10.1145/359657 .359659.

R M Needham and M D Schroeder. “Authentication Revisited”. In: SIGOPS Oper.
Syst. Rev. 21.1 (1987-01), p. 7. 1SsN: 0163-5980. DOI: 10.1145/24592.24593. URL:
https://doi.org/10.1145/24592.24593.

Stefan Niirnberger and Christian Rossow. “— vatiCAN — Vetted, Authenticated
CAN Bus”. In: vol. 9813. 2016-08, pp. 106—-124. 1SBN: 978-3-662-53139-6. DOT: 10.
1007/978-3-662-53140-2_6. URL: https://doi.org/10.1007/978-3-662-
53140-2_6.

LibAscon. URL: https://github.com/TheMatjaz/LibAscon (visited on 2022-01-
31).

Ascon - Lightweight Authenticated Encryption & Hashing. URL: https://ascon.
iaik.tugraz.at/ (visited on 2019-07-20).

CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. URL: https://competitions.cr.yp.to/caesar-submissions.html
(visited on 2022-01-31).

Lightweight Cryptography competition. URL: https://csrc.nist.gov/projects/
lightweight-cryptography/finalists (visited on 2022-01-31).

https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/24592.24593
https://doi.org/10.1145/24592.24593
https://doi.org/10.1007/978-3-662-53140-2_6
https://doi.org/10.1007/978-3-662-53140-2_6
https://doi.org/10.1007/978-3-662-53140-2_6
https://doi.org/10.1007/978-3-662-53140-2_6
https://github.com/TheMatjaz/LibAscon
https://ascon.iaik.tugraz.at/
https://ascon.iaik.tugraz.at/
https://competitions.cr.yp.to/caesar-submissions.html
https://csrc.nist.gov/projects/lightweight-cryptography/finalists
https://csrc.nist.gov/projects/lightweight-cryptography/finalists

	List of Acronyms and Symbols
	Introduction to the CAN bus
	The CAN bus
	The physical layer: differential signalling
	The data-link layer: the CAN frame

	Faster and longer SDUs with CAN FD
	The CAN FD frame

	Fragmentation and reassembly
	The standard solution with ISO-TP
	Custom-tailored transport protocols

	Bus security and threat model
	Threat model
	Primary threat: sniffing, spoofing, replaying messages
	Secondary threat: untrusted co-hosted applications
	Rationale for the selected threats

	Not included in the threat model

	The proposed solution: CBS protocol
	CBS requirements, briefly
	The protocol specification
	The protocol reference software implementation

	Protocol specification design choices
	Multicast communication
	Arbitrary power cycles
	Fast handshake ramp-up
	Low-performance devices
	Device replacement
	Bus arbitration
	Message logging and debugging encrypted content
	Optional message fragmentation
	Authenticated-only messages
	Message length and MAC length
	Motivation for choosing the Ascon cipher

	Software implementation design choices
	Design and development cycles
	Why making a reference implementation?
	Hazelnet library
	Hazelnet library requirements
	Hazelnet library architecture
	Hazelnet limitations

	LibAscon library
	Why not using the reference implementation?
	LibAscon properties
	Features introduced by LibAscon
	Testing

	Hazelnet Demo Platform
	Used hardware
	What the demo does
	Firmware structure
	Firmware size
	Laptop software
	Interacting with the demo
	Example CAN log

	Potential protocol extensions
	Perfect Forward Secrecy (PFS)
	Automatic pairing of new Clients or a new Server
	Hiding the plaintext length
	Increase SAD tag length
	Transmitting-only parties and per-party counter nonces
	Server replication

	Conclusion
	Summary
	Final thoughts

	Attachments
	Bibliography

CAN Bus Security protocol specification

Protocol version: 1.3 — Document revision: 4

Matjaz Gustin
gustin@matjaz.it

2022-05-23

A A A
@ [f][l@]

|]
1 —

This work is licensed under a @ @
Creative Commons Attribution 4.0 International License.

mailto:gustin@matjaz.it

https://creativecommons.org/licenses/by/4.0/

CONTENTS

Contents

1 Definition and threat model
1.1 Hardware requirements

1.2 Communication stack

2 (General definitions

2.1 Notation e
2.2 Parties
2.3 Cryptographic keys
24 Client and Server
25 Groupso
2.5.1 Single vs. multiple Groups
2.6 SeSSiON
2.7 Endianness
2.8 Warnings e
2.9 Time functions
2.9.1 Current timestamp
2.9.2 Time difference oL
2.9.3 Current Counter Nonce delay
2.10 Cryptographic functions
2.10.1 Authenticated encryption with associated data
2.10.2 Hashing
2.10.3 Random number generation

3 Client and Server states
3.1 Client configuration
3.2 Client state variableso
3.3 Server configuration Lo
3.4 Server state variableso L Lo

4 Message Header

2

10
10
11
11
12
12
12
13
14
14
15
15

16
16
17
17
19

20

CONTENTS

4.1 Header Types o . 20
4.2 Physical location of CBS Header within the CAN FD frame 21
4.3 Payload Types 23
Protocol timeline 25
5.1 Server initialisation 25
5.2 Client initialisation oL 26
5.2.1 Request generation 26
5.2.2 Request message format oL 27
5.3 Server processing Requesto 27
5.3.1 Request message validation 27
5.3.2 Response message format 28
5.4 Client processing Response 29
5.4.1 Response message validation 29
5.4.2 Waiting for a Response 31
5.5 Application Data transmission, 31
5.5.1 Incrementing Counter Nonces 32
5.5.2 Unsecured Application Data message format 32
5.5.3 Secured Application Data over CAN FD message format 33
5.5.4 Secured Application Data over Transport Protocol message format . 34
5.6 Application Data reception L. 35
5.6.1 Unsecured Application Data validation 35
5.6.2 Secured Application Data validation 36
5.6.3 Counter Nonce synchronisation and acceptance 37
5.7 Server renewing Session 38
5.7.1 Expiration criteriao o 38
5.7.2 Server-side Session renewal phase 39
5.7.3 Session Renewal Notification message format 41
5.8 Client processing Session Renewal Notification 42
5.8.1 Session Renewal Notification validation 42

CONTENTS

5.8.2 Client-side Session renewal phase

6 Checks against replays, spoofs and DoS attacks
6.1 Server processing messages only the Server may transmit
6.2 Client processing Requests
6.2.1 Request message validation

6.3 A note on Denial of Service (DoS) attacks

7 Low-power modes of the Parties
7.1 Client low-power mode
7.1.1 Client caching Request before low-power

7.2 Session Server low-power mode
Appendices
A Alternative AEAD ciphers and hash functions

B Reconfiguring Long Term Keys

Intended audience

46
46
46
46
46

48
48
48
49

51

51

52

This document is the formal reference description of the protocol, including detailed

behaviours, message formats descriptions and validations. It is aimed at developers that

want to implement the protocol or understand its behaviour in detail.

It is assumed that the reader is already familiar with the following notions:

1. basic cryptography including symmetric ciphers, authenticated encryption, hashing,

cryptographic protocols, replay attacks, nonces, Alice & Bob notation,
2. CAN and CAN FD buses, their characteristics and behaviour,

3. (optional) the ISO-TP transport protocol over CAN and CAN FD.

1 DEFINITION AND THREAT MODEL

1 Definition and threat model

The CAN Bus Security or in short CBS is a Client-Server protocol to enable cryp-
tographically secure, multicast communication within a set of trusted devices
connected to the same CAN FD bus. CBS is designed to be simple, fast, resistant
to replay attacks and allow a simple reconfiguration in case of a Client requires a settings
reset or a replacement in case of hardware failure.

CBS is based on the revised nonce-based Needham—Schroeder Symmetric Key protocol
[1]]2], which is the basis for the Kerberos protocol, for the key distribution and on vatiCAN
[3] for the timeliness nonces.

CBS protects against passive and active Man-in-the-Middle attacks on CAN FD bus
traffic, much like TLS does for TCP connections. The focus is solely on the security during
transport of messages between Parties who are assumed secure and uncompromised.

Eve Charlie
Attacker Client
LTKcg
a " 3 CAN FD bUS
Session Server

LTK 49
LTKpgg
LTKcg

Figure 1: Abstract representation of a CAN FD bus shared between the Client nodes
Alice, Bob, Charlie and a Session Server node with an attacker Eve having physical access
to the same bus. Alice, Bob and Charlie are each preconfigured to securely communi-
cate with the Session Server only at the beginning, without having the initial means to
communicate with each other; it’s the Session Server’s role to generate and distribute
additional short term keys to enable secure inter-Client communication.

CBS does protect against:

1. tampering of messages, i.e. active changes in the messages on the bus,
2. sniffing sensitive data, i.e. reading the content of messages,
3. spoofing of messages, i.e. transmitting messages claiming to be someone else,

4. within a configurable time interval, also replay attacks, i.e. reuse of old messages to
induce a behaviour in the bus-connected devices.

1 DEFINITION AND THREAT MODEL

CBS does not:

1. hide communication metadata including;:

o CAN IDs,

e which Parties are communicating,
e when are they communicating,

e length of encrypted data,

2. protect against software applications co-hosted on the same device reading each
other’s decrypted messages from a shared message queue’,

3. protect against compromised Parties: the end nodes of the communication are as-
sumed secure and well-behaving,

4. guarantee Perfect Forward Secrecy (PFS),
5. handle secure storage of cryptographic keys,
6. handle secure logging of messages.

Rationale: The systems connected with CAN buses are generally closed and have a
small, fixed number of devices that communicate in a multicast fashion. A major security
threat is a foreign device attached to the same bus that could sniff, spoof and replay the
messages to force the whole system into a desired behaviour. Privacy is generally not an
issue, as the communicating Parties are not humans, so the metadata is not being focused
on.

1.1 Hardware requirements

CBS assumes the data-link layer is CAN FD because the 8 bytes of payload in classic
CAN frames are not enough to carry the cryptographic overhead (nonces, MACs etc.). In
theory it should still be possible (although unpractical) to use CBS on top of a transport
layer handling the fragmentation and reassembly of 64 or more bytes of payload length
into classic CAN frames.

The platform using CBS must provide a hardware (true) random number generator
(TRNG), used to prove the freshness of the CBS messages.

One device on the bus must act as a server and is expected not to lose any messages. The
other devices may have arbitrary power cycles. See Section 7 for details.

Tn case of untrusted co-hosted applications, the implementation of the protocol can be moved from
a shared security layer into the application space, as seen in the third stack example in Section 1.2.

6

1 DEFINITION AND THREAT MODEL

1.2

Communication stack

The CBS implementation can potentially be placed in a variety of positions within the

existing stack of communication layers, depending on the user’s requirements. Figure 2

shows 3 common patterns. From left to right:

1.

CBS over CAN FD: supporting only short messages, which are secured before being
transmitted over CAN FD and decrypted before being passed to the appropriate
application. Assuming a shared queue of messages, the co-hosted applications may
still read each other’s messages once decrypted. The whole physical device acts as
a Party (see definition in Section 2.2).

CBS over Transport: similar to the previous point, but larger messages are sup-
ported, too. They are secured before being fragmented and reassembled before
being decrypted. Assuming a shared queue of messages, the co-hosted applications
may still read each other’s messages once decrypted. The whole physical device acts
as a Party.

One CBS instance per application: for cases will no trust between co-hosted appli-
cations, each one uses a separate queue and CBS implementation instance or is part
of a different Group (see Section 2.5), allowing them to hide queued messages from
each other, as they are provided in plaintext only to their own application. Each
co-hosted application acts as a Party.

CBS over Transport One CBS instance per app

-

App 1 App 2 App 1 App 2
CBS over CAN FD L pl‘) } L p‘p) L p‘p } L p‘p)
App 1 M App 2 CBS CBs1M0352
‘ ‘ 7 ' ‘ N ' ‘ ‘ N
CBS Transport Transport
‘ R e ‘ R e ‘ A
CAN FD CAN FD CAN FD

Figure 2: Possible positions of the CBS implementation in the communication stack. The
Transport layer handles fragmentation and reassembly of long CBS messages that don’t
fit into a single CAN FD frame.

2 GENERAL DEFINITIONS

2 General definitions

2.1 Notation

« := indicates assignment of values to variables.

= indicates equality, like in a mathematical equation.
e || is the concatenation operation.

o Integer data types are denoted similarly to the ISO C standard integer library
stdint.h: uint8 being an unsigned 8-bit integer, uint64 being an unsigned 64 bit
integer and so on. A byte is synonymous with uint8 and is shortened with “B”. A
uint24 type is equivalent to a uint32 without its most significant byte.

o Arrays are indicated with the forms:

— uint8[16] for fixed-length in bytes, in this case 16 (128 bits)

— uint8[*] for arbitrary length

e 0Ox is the prefix denoting that the following number is in hexadecimal notation. E.g.
0x012A is 298.

2.2 Parties

Let us define a Party as an abstract entity willing to communicate securely with others
on the bus. Party names use the Alice and Bob [4] notation. The Parties are thus listed
as Alice, Bob, Charlie, etc. and map bijectively to their initials A, B, C etc.

The Party may be a physical device or a software module, even co-hosted on the same
physical device along with other software modules, all of them using CBS.

The Source Identifier? id" is a uint8 integer value in [0, 255] N Z that uniquely represents
the Party A. The numbering starts with 0 and is used sequentially with no gaps, e.g.
using the identifiers {0, 2,3} is not allowed, while {0, 1,2} is. In other words, the largest
Source Identifier used must be equal to the amount of Parties on the bus minus 1.

The Session Server has always the Source Identifier 0 (zero). As a consequence
there may be at most 256 Parties and of these at most 255 Clients.

Example with 4 Parties S, A, B, C"

id® =0,id* =1,id® = 2,id° = 3

2While Party Identifier may have seemed a more intuitive naming choice, its acronym PID could have
caused some confusion with the Process Identifier of an operating system, especially if the same physical
device runs multiple processes, each acting a CBS Party.

8

2 GENERAL DEFINITIONS

2.3 Cryptographic keys

Two types of cryptographic keys are used in CBS:

e Long Term Keys or LTKs are 128 bits or more long static, constant, preconfigured,
symmetric keys that uniquely identify a Party. Each Party has only one unique
LTK. Unless a security incident occurs, LTKs never change. They must be kept
in persistent storage (preferably secure storage). LTKs are used to securely obtain
STKs.

o Short Term Keys or STKs are 128 bit long symmetric keys randomly generated
at runtime that identify a Session with a limited lifespan. STKs may be kept in
volatile storage (preferably secure storage). They are used to secure application
data transferred between Parties.

2.4 Client and Server

CBS is based on the client-server paradigm, where one central Party called the Ses-
sion Server keeps track of the security Session and provides the current STK to the
Clients upon request. A Client is a Party having only one LTK and using it to obtain
the current Session information from the Session Server, which in turn keeps a copy of
the LTK of each Client, enabling the Server to securely communicate with each Client
independently. Clients trust the Session Server by definition.

The Session Server is a role one Party assumes. Said Party may only perform this role (e.g.
a dedicated device on the bus) or may also be assigned other tasks, including exchanging
application data with other Parties.

A generic Client is indicated with an A or Alice while the Session Server is always indicated
with an S.

2.5 Groups

Groups are preconfigured ordered sets of Clients that use the same STK. Different Groups
have different STKs, effectively isolating them from each other. By definition, the Ses-
sion Server is always part of every Group, because it has access to all STKs. The Group
cardinality must be at least 2, thus the Session Server and one or more Clients.

A generic Group is indicated with a G; any variable or constant indicated with a G
subscript (e.g. x¢) is an instance of that variable for a specific Group G.

The Group Identifier idg is a uint8 integer value in [0,255] N Z that uniquely represents
the Group G. As a consequence there may be at most 256 Groups. The numbering starts
with 0 and is used sequentially with no gaps, e.g. using the identifiers {0,2,3} is not

9

2 GENERAL DEFINITIONS

allowed, while {0, 1,2} is. In other words, the largest Group Identifier used must be equal
to the amount of Groups on the bus minus 1.

The Group Identifier 0 (zero) must always be available and all Parties belong
to it; in other words, it’s the broadcasting group.

Example with 4 Parties S, A, B, C and 3 Groups J, K, L:

id; =0, J:={S, A B,C}
idi = 1, K = {S, A, B}
id, =2, L= {S, B}

2.5.1 Single vs. multiple Groups

In the simplest setup of a bus, the broadcasting group with idg = 0 is the only available
Group, allowing no domain separation between the messages on the bus: everything is
accessible to any other CBS Party (but not to non-CBS-enabled nodes). In case there is
only a single, broadcasting Group, the Group Identifier may be omitted from the message
headers (see Section 4.1).

A more sophisticated approach uses many Groups to allow only some Parties to be able
to decrypt specific messages and prevent other Parties from doing so to reduce the attack
surface in case a Party is compromised or simply untrusted.

Because of the multicasted nature of the communication and the use of symmetric cryp-
tography, any Party within a Group could sniff sensitive messages other Group members
send to each other and generate fake message claiming they come from someone else in
the Group. All Parties within a Group are trusted and assumed to behave properly, in the
sense that they don’t spoof or alter each other’s messages within the Group. To prevent
this kind of possibility completely, the bus may be configured to have many Groups of
just 2 Clients for 1:1 Client-Client or 1 Client for 1:1 Client-Server communication. The
Session Server is anyhow in every group.

2.6 Session

A Session is the time interval where a certain STK is chosen by the Session Server to
be the current one for a Group and distributed to Clients upon request. The STK is
then used to enable secure application data exchange between all Parties within the same
Group.

The Session Server starts a new Session when the previous expired or initially immediately
after its boot. A Session has an expiration in time (amount of seconds since being estab-
lished) and in number of messages sent by all involved Parties combined, whichever comes
first, and it’s automatically replaced with a new Session after expiration. See Section 5.7
for details.

10

2 GENERAL DEFINITIONS

2.7 Endianness

All multi-byte integers such as a uint64 must be encoded with little-endian byte order:
least significant byte first, at byte with index 0. When concatenating values, the left-most
value in the concatenation occupies the least significant bytes. When concatenating binary
arrays, the left-most value in the concatenation occupies the bytes with smaller indices in
the array. Bit sequences and bytes are always indicated with the most significant bits on
the left-most side and with the bit at index 0 being the least significant; “MS” and “LS”
are used to indicates the Most Significant and Least Significant bits respectively.

These rules are valid for all messages as well as for all inputs of encryption, decryption
and hashing functions.

A few examples:

e uint16 x =1 is encoded as uint8[2] = (1,0) = 0x0100.

o Assuming uintl6 z = 1, uintl6 y = 2, the concatenation z||y is encoded as
uint8[4] = (1,0,2,0) = 0x01000200.

o Assuming uint8[2] z = (1,2) = 0x0102, uint8[3] y = (3,4,5) = 0x030405, the
concatenation z||y is encoded as uint8[5] = (1,2,3,4,5) = 0x0102030405.

Rationale: Little-endian is the dominant endianness for x86 and many ARM architec-
tures (many ARM architectures have configurable endianness but little is default). Other
than that, simply one endianness must be picked to avoid confusion.

2.8 Warnings

In case a security issue or attack is detected, a warning should be issued by the CBS
implementation to the application by any means, in order for it to decide how to handle
the issue (e.g. request a retransmission of a broken message or ignore it).

The Warnings, their shortenings/acronyms and encoding values are:
 Success (OK) = 0. The usage of this warning is optional at the successful validation
of any received message or other successful operation.

o Invalid tag (INV) := 1. The message is not intact or not authentic or does not use
the proper values in the hashing/authenticating operations.

o Message From Myself (MFM) := 2. The message contained the receiver’s Source
Identifier as the transmitter’s identity.

» Not Expecting a Response (NER) := 3. The Client received a Response addressed
to it while not expecting any.

11

2 GENERAL DEFINITIONS

o Server-Only Message (SOM) := 4. The message is of a type which only the Ses-
sion Server can transmit, but the transmitter’s identity was not the Session Server.

e Response Timeout (RTO) := 5. The Client did not receive a Response to its Request
within the preconfigured timeout.

o Old message (OLD) = 6. The message contained a too-old counter nonce.
 Denial of Service (DOS) := 7. The system is receiving too many suspect messages.

» Not In Group (NIG) := 8. The Party the Request originated from does not belong
into the requested Group.

» Received Overflown Nonce (RON) := 9. The received message contained a Counter
Nonce that exceeded its maximum allowed value.

o Received Zero Key (RZK) = 10. The received Response message, once decrypted,
contained an all-zeros ST K that cannot be used.

o Values € [11,15] are reserved for future use (RFU).

The values are chosen to fit into 4 bits.

2.9 Time functions
2.9.1 Current timestamp

The currenttime() function is a generic timestamp-generating function. As the time-
stamps are never transmitted in the messages, their format is not relevant for the purposes
of this protocol; for this reason each Party may have a different implementation of this
function. The function is not required to provide the absolute current timestamp, in the
sense of date and time; a relative timestamp suffices, in the sense of a rolling counter since
an arbitrary point in time. The required accuracy is 1 millisecond.

2.9.2 Time difference

The timedelta(t;,ts) function provides the elapsed time in milliseconds between two
timestamps generated by currenttime with a resulting accuracy of 1 millisecond or better.
It assumes that ¢, represents a timestamp in the future compared to ¢, even if the actual
values are t5 < t;. The implementation of this function must take care of any roll-around
of the timestamps if too much time passes between them. As with the currenttime
function, the exact binary format of the output of this function is not relevant; for this
reason each Party may have a different implementation of this function.

12

2 GENERAL DEFINITIONS

2.9.3 Current Counter Nonce delay

The ctrdelay(m,t,S, D) function provides the current uint24 Counter Nonce validity
delay used to validate the freshness of the received messages. This delay is used to accept
also slightly older messages in case of congestion on the bus (see Section 5.6.3). It takes
4 input parameters:

1. the timestamp m of the last valid message received which is assumed to be in the
past, i.e. older or equal than currenttime(),

2. the timestamp ¢ when to compute the Counter Nonce validity delay, which is gener-
ally going to be the reception instant of the message containing said Nonce, obtained
through currenttime(),

3. the maximum Counter Nonce Delay allowed D € Z, > 0, usually a constant,

4. the maximum Silence Interval allowed S € Z,> 0, usually a constant, in the same
units as the output of the timedelta function.

The function is defined on [0, +o0] as:

0 if timedelta(m,t) > S

[D (1 — 7timedelta(m’t)>-‘ otherwise

ctrdelay(m,t,S, D) = {
S

It can be broken down as follows:

» timedelta(m,t) is the elapsed time since the last valid message was received,
D(1— %Sta(mt)) = D — £ timedelta(m, t) is a real-numbered linear decay from
D to zero over a time interval of .S, indicated as [in the Figure 3. D is the offset of

the line equation while — % is its slope,

o the ceiling function [-] is used to convert the real-numbered decay to integers,

 the timedelta(m,t) > S condition is used to provide a zero-delay after the max-
imum Silence Interval S has passed, effectively allowing no Counter Nonce delays
after that. This condition also simplifies error handling, as it prevents a division
by zero, in case S = 0, which would be the case of no tolerance for older Counter
Nonces.

13

2 GENERAL DEFINITIONS

ctrdelay(m,t,S, D)

s

Figure 3: Plot of the ctrdelay function with since the fixed instant m of the last valid
received message, D = 4 and S a fixed positive constant. The S parameter is used to
stretch the decaying of the delay over time, while the D parameter is used to indicate the
starting delay. The line [is the real-value decaying line, then converted to the ceiling-
integer equivalent. Note that the value of ctrdelay stays at 0 for t > S.

2.10 Cryptographic functions
2.10.1 Authenticated encryption with associated data

AEAD(K, n,ad, pt,tl) is the declaration of the function for authenticated encryption with
associated data with variable tag length. The Asconl28 v1.2 cipher [5] is chosen as its
definition®. It takes 5 input parameters:

1. the secret key K, 128 bit;

2. the unique public nonce n, 128 bit;

3. the public associated data ad to be authenticated but not encrypted;
4. the plaintext pt of arbitrary length to be authenticated and encrypted;

5. the desired length of the output tag tl in bytes.

The AEAD function has two outputs:
1. the ciphertext, being the encrypted plaintext. It has the same or larger length than
the plaintext;

2. the tag (a.k.a. Message Authentication Code or MAC) of arbitrary length, proving
the authenticity and integrity of the associated data and the ciphertext.

3For the usage of different ciphers, see the Appendix A.

14

2 GENERAL DEFINITIONS

Rationale: Ascon is a sponge-based authenticated encryption algorithm designed to
be lightweight and have some countermeasures against side-channel attacks. Ascon has
been selected as the primary choice for lightweight authenticated encryption in the final
portfolio of the CAESAR competition (2014-2019).

Ascon has a very small state, making it memory-efficient for embedded systems; it per-
forms a single-pass authenticated encryption without the need for complex modes such
as AES-CBC with EtM or AES-GCM; it also supports arbitrary input data length and
generates ciphertext with the same length as the plaintext, removing the need for padding
of the plaintext and in some cases of the padding that CAN FD applies to the payload,
sparing on message size and transmission time.

2.10.2 Hashing

Hash(z,dl) is the declaration of the cryptographic hash function with variable digest
length and resistance to length-extension attacks. The Ascon-XOF v1.2 function [5] is
chosen as its definition. It takes 2 input parameters:

1. the input data x to be hashed, arbitrary amount of bits;

2. the desired length of the output digest dl in bytes.

Rationale: Ascon-XOF has the same state and permutations as Asconl28 (see Sec-
tion 2.10.1), allowing a reduced code size due to code reuse with the same security prop-
erties.

2.10.3 Random number generation

TRNG(n) is the true-random number generator producing n random bits. This could be
provided by a hardware module or by an operating system?.

4For practical reasons it could be implemented using a CSPRNG with a secret initial seed, however
such implementation is discouraged, as it must take care of never repeating the same value, not even
after a reboot of the device or reinitialisation of the CSPRNG. Such a mistake could lead to nonce reuses
which could leak information about the plaintext.

15

https://competitions.cr.yp.to/caesar-submissions.html

3 CLIENT AND SERVER STATES

3 Client and Server states

Here is indicated the formal list of constant configuration fields and runtime-changing
variables for Clients and Sessions Server.

3.1 Client configuration

Clients hold a few global constant settings which do not change at runtime and are thus
kept in persistent memory. The default values are just recommended values and can be
configured differently by the protocol user.

e The Long Term Key LT K 45 to communicate with the Session Server.
It must be at least 128 bits (16 B) in length and not all-zeros.
Default® length: 128 bits.
o The Response timeout t,cqres, being the amount of time since the transmission of a
Request in which a Response is expected.
It must be € [0,65535] ms.
Default: 100 ms.

o Its own Source Identifier id".

o The Header Type h as per Section 4.1 to use for all messages. Must be the same for
all Parties.

Default: HO, VG.
e The Set of Groups the Client belongs to. This is defined as a set of tuples:
(idg, D&Y, SEY ti"), VG
with per-Group configuration, containing:

— The Group Identifier: idg

— The Maz Counter Nonce Delay: D@, used to filter out recent messages from
old ones. Note that different Parties may have different values for this value.
It is recommended to use small values for stricter security requirements. See
definition of the ctrdelay function in Section 2.9.3 for usage details.

It must be € [0,2%?],VG.
Default value: 20, VG.

5Keys with more than 128 bits may require a different implementation of the AEAD function. See
Appendix A.

16

3 CLIENT AND SERVER STATES

— The Maz Silence Interval: S§**, used to filter out recent messages from old
ones. Note that different Parties may have different values for this value. It
is recommended to use small values for stricter security requirements. See
definition of the ctrdelay function in Section 2.9.3 for usage details.

It must be € [0,65535] ms, VG.
Default value: 5000ms = 55, VG.

— The Client-side Session Renewal time Duration: %", used to know when the

information about the expired Session must be deleted.

It must be < 6447, VG, where ¢4/ is the Delay between Session Renewal No-
tifications of the same Group the Session Server uses (see Section 3.3).

It must be € [0,65535] ms, VG.

Default value: 5000 ms = 5, VG.

3.2 Client state variables

Clients hold a few state variables for each Group G which change at runtime. They may
be kept in volatile memory. They must be all initialised to zeros.

o The Short Term Key ST K¢ of the Group. Exactly 128 bit (16 B) in length.

o The Counter Nonce N&™ is a uint24, used in messages exchanged within the Group
G to prove the freshness of the messages.

o The Request Timer rg is a variable of the same data type as the output of the
currenttime function, used to check whether a Request’s timeout is expired.

e The Message Timer mg is a variable of the same data type of the output of
currenttime that keeps the timestamp of the latest valid received message to scale
down the acceptable Counter Nonce interval. See definition of the ctrdelay func-
tion in Section 2.9.3 for usage details.

o The Request Nonce N is a uint64 that keeps a copy of the random nonce used in
the Request messages for the ST K and used to validate the Response. It is also

used to indicate that a Response is expected in the first place when = 0.
« The information of the just-expired Session: STKZ?, NE™" mad which have the
exact same format and role than ST Kg, N&", me, but they refer to the previous

Session rather than the current one.

3.3 Server configuration

The Session Server holds a few global constant settings which do not change at runtime
and are thus kept in persistent memory:

17

3 CLIENT AND SERVER STATES

18

e The Long Term Keys of each Client: LTK 5, LT Kpg, LT Kcg etc., to secure the

STK distributions.
They must each be at least 128 bits (16 B) in length and not all-zeros.
Default length: 128 bits.

The Header type h as per Section 4.1 to use for all messages. Default value: HO.
Must be the same for all Parties.

The Set of all Groups, defined as a set of tuples:
(idg, Po, D™, 5§, N7, s&7, tei!),va
with per-Group configuration, containing:

— The Group Identifier: idg
— The Set of Parties belonging to this Group: Pg

— The Maz Counter Nonce Delay: D", used to filter out recent messages from
old ones. Note that different Parties may have different values for this value.
It is recommended to use small values for stricter security requirements. See
definition of the ctrdelay function in Section 2.9.3 for usage details.

It must be € [0,2%%] ,VG.
Default value: 20,VG.

— The Maz Silence Interval: S&H**, used to filter out recent messages from old

ones. Note that different Parties may have different values for this value. It
is recommended to use small values for stricter security requirements. See
definition of the ctrdelay function in Section 2.9.3 for usage details.

It must be € [0,65535], msVG.
Default value: 5000ms = 55, VG.

— Counter Nonce Upper Limit: NG| used to know when the current Session
expires due to the amount of messages sent. It is recommended to use small
values for stricter security requirements.

It must be < 224 — 27 = 16777088 = 0xFFFF80, V(.
Default value: 224 — 216 = 16711680 = 0xFF0000, VG.

— Session Time Duration: s¢?, used to know when the current Session expires

due to enough time passed since its establishment. It is recommended to use
small values for stricter security requirements.

It must be < 232 — 1ms, VG, which is approximately 49 days.
Default value: 3600000 ms = 3600s = 1 hour, VG.

— Delay between Session Renewal Notifications: tgtf, used to know when to send

the next Notification.
exp

It must be € }0, {SG J { ms, VG.

6
Default value: 2000ms = 25, VG.

3 CLIENT AND SERVER STATES

There are no Source Identifiers in the Session Server configuration, as they are always 0
for the Session Server for each Group.

3.4 Server state variables

The Session Server holds a few state variables for each Group GG which change at runtime.
They may be kept in volatile memory®. They must be all initialised to zeros.

o The Short Term Key ST K¢ of the Group. Exactly 128 bit (16 B) in length.

o The Counter Nonce N&" is a uint24, used in messages exchanged within the Group
G to prove the freshness of the messages.

e The Session Timer sqg is a variable of the same data type as the output the
currenttime function, used to check whether a Session is expired.

e The Message Timer mg is a variable of the same data type of the output of
currenttime that keeps the timestamp of the latest valid received message to scale
down the acceptable Counter Nonce interval. See definition of the ctrdelay func-
tion in Section 2.9.3 for usage details.

« The information of the just-expired Session: STKZ4 NG m@d which have the
exact same format and role than ST Kq, N&", mg, but they refer to the previous
Session rather than the current one.

6Tn case the state variables are kept in volatile memory and the Session Server reboots, it will not be
able to communicate with other Clients, but the Clients will be able to communicate with each other, if
they already obtained the Session information from the Server before its reboot. The protocol is designed
assuming the Session Server should not reboot. For higher availability, it’s recommended to keep the
state variables in non-volatile memory.

19

4 MESSAGE HEADER

4 Message Header

Each CBS message contains two parts: the Header with the metadata and the Payload
with either CBS-related data or with wrapped application data.

The Header has always the same fields in every message:

1. GID: contains the Group Identifier id; of the Group the message is destined to. It
defines the Parties that should have the STK to decrypt and validate the content
of the message. Optional in case only a single, broadcasting Group is used on the
bus, as it’s value could be assumed to be 0 (zero) instead of being transmitted.

2. SID: contains the Source Identifier id* of the Party A transmitting. It is always 0
for the messages transmitted by the Session Server.

3. PTY: contains the Payload Type as per Section 4.3, which indicates the content
and format of the Payload, to process it properly.

4.1 Header Types

Many Header encodings are possible in order to spare space and transmission time. The
possible Header Types are numbered starting from 0 and shortened as HO, H1 etc. Header
Types € [0,6] are defined in the Figures 4, 5, 6, 7, 8, 9, 10. Header Types € [7,31]
are reserved for future use (RFU). Any custom, implementation-defined Headers can be
indicated with numbers > 32.

Header 0
uint8 | uint8 | uint8
8 bit | 8 bit | 8 bit
GID SID PTY

Figure 4: Header 0 (HO): the most explicit and largest in amounts of Groups and Parties,
but also the least efficient. Occupies 3 bytes, allowing up to 256 Groups and up to 256
Parties (Session Server included).

Header 1
uint8 uint8
8 bit | MS 5 bit | LS 3 bit
GID SID PTY

Figure 5: Header 1 (H1): occupies 2 bytes, allowing up to 256 Groups and up to 32
Parties (Session Server included).

20

Header 2
uint8 uint8
8 bit | MS 5 bit | LS 3 bit
SID GID PTY

4 MESSAGE HEADER

Figure 6: Header 2 (H2): occupies 2 bytes, allowing up to 32 Groups and up to 256
Parties (Session Server included).

Header 3
uint8
MS 3 bit | 2 bit | LS 3 bit
GID SID PTY

Figure 7. Header 3 (H3): occupies 1 byte, allowing up to 8 Groups and up to 4 Parties
(Session Server included).

Header 4
uint8
MS 3 bit | 2 bit | LS 3 bit
SID GID PTY

Figure 8: Header 4 (H4): occupies 1 byte, allowing up to 4 Groups and up to 8 Parties
(Session Server included).

Header 5
uint8 | uint8
8 bit | 8 bit

SID PTY

Figure 9: Header 5 (H5): when all Parties belong only to a single, broadcasting Group
(which is equivalent to saying that there are no Groups at all), the GID field becomes
redundant, so it can be removed. Occupies 2 bytes, allowing only 1 Group and up to 256
Parties (Session Server included).

Header 6
uint8
MS 5 bit | LS 3 bit
SID PTY

Figure 10: Header 6 (H6): like for Header 5, it has no GID field as a single, broad-
casting Group is assumed. Occupies 1 byte, allowing only 1 Group and up to 32 Parties
(Session Server included).

4.2 Physical location of CBS Header within the CAN FD frame

CBS does not enforce a specific physical location of the Header within a CAN FD frame to
better fit the needs of a closed, static system. This means that some or all of the Header

21

4 MESSAGE HEADER

fields may be encoded within the CAN ID instead of being placed into the CAN FD
payload (prepended to the CBS Payload), which is otherwise the default choice. Such
default is chosen as the most portable, completely independent of the CAN ID, effectively
decoupling the CAN FD data-link layer from the CBS layer. The possibilities are also
depicted in Table 1.

Encoding (parts of) the CBS Header into the CAN ID can free some valuable space in
the CAN FD payload to carry more application data and at the same time leverage
the hardware-based filtering that some CAN transceivers implement to ignore specific
CAN IDs. Such an encoding is up to the implementation.

Because the CBS Header may be encoded in the CAN ID and it may have different sizes
as per the previous Section, its size is not included in the format and validity checks
performed upon receiving any CBS message. It is assumed that the CBS implementation
performs the en-/decoding of the CBS Header to/from the proper location.

It is required that all Parties on the bus use the same way of encoding of the Header.

Possibility 1 Full CBS Header CBS Payload
Possibility 2 | CBS Header part 1 | CBS Header part 2 CBS Payload
Possibility 3 e Full CBS Header = CBS Payload
CAN frame CAN ID CAN FD payload

Table 1: Possibilities for the physical position of the CBS Header: completely encoded in

the CAN ID, partially encoded in the CAN ID and partially within the CAN FD payload
or completely included in the CAN FD payload, prepended to the CBS Payload.

Some examples of how the CAN ID is used to encode the CBS Header:

o Assuming many large Groups, a Header 0 (HO) could be encoded in the middle of
a 29 bit ID, leaving the upper bits for priority indication (to override the implicit
priority of the rest of the ID during arbitration) and the lowest bits to indicate the
type of application-level data carried within the CBS Payload. The latter could
be useful to leverage the hardware filtering for messages of interest. Depicted in
Figure 11.

29 24

P pppp

16
g€8ee geeg

8
SSSs ssss

0
ttta aaaa

Figure 11: Example encoding of a Header Type 0 (HO) into a 29 bit CAN ID: p are
Priority bits, g are the GID bits, s are the SID bits, t the PTY bits and a contain
optional application-level metadata.

o Assuming fewer small Groups, the same thing could be done in an 11 bit ID using
a smaller Header, like H4. Depicted in Figure 12.

22

4 MESSAGE HEADER

11

8
Pgg

0
ssst ttaa

Figure 12: Example encoding of a Header Type 4 (H4) into an 11 bit CAN ID: p is a
Priority bit, g are the GID bits, s are the SID bits, t the PTY bits and a contain optional

application-level metadata.

o A completely different approach would interpret the CAN ID (or part of it) as an

integer enumeration of all possible message from all possible Groups, Sources and

Payload Types. This could also include application message types, which indicate

what the content of the application data in secured messages is about. All Parties

ought to have have a bijective map (e.g. lookup table or conversion function) to

translate from value to meaning and vice versa. Depicted in Table 2.

CANID | GID SID PTY Appl. msg. type
00 0 REN N/A
10 0 RES N/A
2|0 0 REQ N/A
30 0 SADFD Status request
410 0 SADFD Status response
5|0 1 REN N/A
n| 3 12 SADFD Configuration data

Table 2: Example mapping between a numeric CAN ID and all fields of the CBS Header,
along with the application message type determining the category of the content within
Secured Application Data messages. Messages of the CBS layer that do not carry appli-
cation data don’t use this field (indicated as “N/A”).

4.3 Payload Types

The Payload Type is an identifier of the format and content of each CBS message, used

to know how to process the received messages.

The Payload Types, their shortenings/acronyms and encoding values are:

« Session Renewal Notification (REN) = 0. Format described in Section 5.7.3.

e Response (RES) := 1. Format described in Section 5.3.2.

e Request (REQ) := 2. Format described in Section 5.2.2.

 Secured Application Data over Transport Protocol (SADTP) := 3. Format described

in Section 5.5.4.

23

4 MESSAGE HEADER

« Secured Application Data over CAN FD (SADFD) = 4. Format described in Sec-
tion 5.5.3.

o Unsecured Application Data (UAD) := 5. Format described in Section 5.5.2.

« Values 6 and 7 are reserved for future use (RFU).

Rationale: The Payload Type values are chosen to fit within 3 bit and are sorted to
have a decent implicit priority for the CAN arbitration (low value = high priority), if they
are encoded in the CAN ID (see Section 4.2), with the idea that:

e security-enabling messages are more important than application data messages, oth-
erwise said data cannot be secured (REN, RES, REQ > others),

« transport-protocol messages take priority over single-frames to avoid interleaved
messages mid-stream of fragments (TP > FD),

» Secure Application Data messages are more important than unprotected ones (SE
> UN).

24

5 PROTOCOL TIMELINE

5 Protocol timeline

In this section the actions of the Session Server and of each Client, the messages they send
and the Parties’ behaviour are described in chronological order of runtime appearance,
from the initialisation of the CBS implementation (e.g. at device boot) onwards.

Each described step refers to a generic Group G and has thus to be performed for each
preconfigured Group in the Session Server and in each Client.

Session Server
™

Server init.

Clients init.

Secure appl.
data exchange

Figure 13: Timeline of the initialisation of Session Server and the Clients, including the
initial Request and Response messages and the following secured communication of the
Clients. The black dots indicate the start of the CBS initialisation of the Party (e.g. at
device boot). The patterned areas with diagonal lines indicate the time interval when the
Party possesses the current STKg, N&" and is thus able to communicate securely with
others. Not to scale.

5.1 Server initialisation

This is the behaviour that happens during the initialisation of the CBS implementation
on the Session Server, e.g. at device boot. The Session Server generates a new, fresh,
non-zero STK of 128 bit for each Group in its configuration using the true-random number
generator’. Simultaneously it also stores the timestamp of when said STK was generated,

"For the generation of many STKs in a row for performance reasons, a CSPRNG could be used instead
of a TRNG, as long as properly seeded with a secret, non-zero, true-random value.

25

5 PROTOCOL TIMELINE

to later know when it expires, and resets the Counter Nonce of the Group to 0. The same
timestamp of STK generation is also used to initialise the mg value, i.e. the timestamp
of the last valid message received:

STK¢ = TRNG(128 bit) # 0, VG
S¢ = currenttime(), VG
ma ‘= sq, VG
N&™ = 0,VG

After that, the Session Server starts listening for incoming Request messages from Clients,
to which it will reply with Response messages.

At the same time, the Session Server is already able to transmit Application Data messages
to other Clients, both secured and unsecured, noting that Clients are not yet able to
receive the secured ones. As mg is going to be updated upon the successful processing of
a Request, as long as mg = sg for a Group G, no Client in that Group has yet obtained
the ST Kq, N&" values to be able to validate and decrypt a Secured Application Data
message®.

5.2 Client initialisation

This is the behaviour that happens during the initialisation of the CBS implementation
on the Client, e.g. at device boot. At this point in time, the Client has no STKs and
is thus unable to transmit Secured Application Data messages. Unsecured ones on the
other hand are available, because they are STK-independent.

For each Group?, the Client performs the Request generation and its transmission as
follows to obtain its ST K¢, N&" from the Session Server.

5.2.1 Request generation

For the given Group G a unique, fresh, non-zero, true-random number N called the
Request Nonce, is generated and stored in local volatile memory. This number will be
used to verify the freshness of each expected Response message from the Session Server.
N7 is then used to build a Request message. After building such message but before
transmitting it, the current timestamp is also stored in volatile memory, later used to
check whether a Response has been received before the timeout:

8The CBS implementation may decide to either completely prevent the transmission of Secured Ap-
plication Data messages until mg # sg, as no Client could process them, or allow them and handle any
potential reply timeout in the application using CBS.

9To avoid a high computing and bus load spike during the initialisation, the Client may decide to
postpone the Request generation for some Groups that are not immediately needed. The Request Nonces
NG of said subset would thus remain set to zeros to indicate that no Response is expected.

26

5 PROTOCOL TIMELINE

rg = currenttime()
N7 = TRNG(64 bit) # 0

5.2.2 Request message format

The fields of the message are defined in Figure 14, including their data types, names and

values.
REQ-Header REQ-Payload
GID | SID | PTY || uint64 reqnonce | uint8[16] tag
idg | id* | REQ NG* (see note below)

Figure 14: Diagram of a Request message.

The value of the tag field is the keyed, labelled hash of the Header and reqgnonce fields:

tag = Hash(LT K ss||myeq|| GID||SID|| PTY ||regnonce, 16 B)

The Label m,., is the constant uint8[11] array:

Myreq = (99,98,115,95,114,101, 113,117,101, 115, 116)

being the ASCII encoding of the string cbs_request without null-terminations. The
GID, SID and PTY fields in the concatenated hashing input are each encoded into a
uint8. If no GID field is present in the Header, it’s assumed to have the value 0.

5.3 Server processing Request

Upon receiving a Request message, the Session Server must validate it. If valid, a Response
message is generated and transmitted.

5.3.1 Request message validation

1. The GID field, if present, must indicate a known Group.
2. The PTY field must indicate a valid type (in this case REQ).

3. The SID field must not be 0 (thus not being the Session Server): id* # 0. Otherwise,
the CBS implementation must provide a MFM-warning to the application.

4. The (GID, SID) pair must be valid, i.e. the requesting Client must belong to the
Group indicated by GID. Otherwise, the CBS implementation must provide a NIG-
warning to the application.

27

5 PROTOCOL TIMELINE

5. The REQ-Payload must have length > 24 B (sizes of reqgnonce + tag fields). Longer
Payloads are allowed because the additional bytes may be used by future CBS
versions.

6. The regnonce field must not be 0: N5 # 0

7. The tag must be valid. Otherwise, the CBS implementation must provide a INV-
warning to the application. This check effectively makes the Session Server discard
Requests that are spoofed or not intact. Replayed Requests are still accepted (see
Section 6.3).

In case any of these checks fails, the message is discarded and the warning, if any, is
provided to the application. Otherwise the Session Server:

1. Saves the instant of reception of the Request:

sq+1 if currenttime() = sg
me = currenttime()
currenttime() otherwise

This will ensure mg # sg even for Requests being received within the same mil-
lisecond from the Session start sq, indicating to the Session Server that at least one
Client in the Group G has requested and obtained ST K¢, N&". In other words, in

the Group G there is now at least one Client able to successfully receive and process
Secured Application Data messages.

2. Builds a Response message as per the next section.

3. Transmits said Response message.

5.3.2 Response message format

A represents the Client in the Group G that sent the Request to which the Session Server
is replying with this message. The fields of the message are defined in Figure 15, including
their data types, names and values.

RES-Header
GID SID PTY
ide | id° =0 | RES

RES-Payload
uint8 client | uint24 ctrnonce | uint64 resnonce | uint8[16] ctext ‘ uint8[16] tag
id4 Ngr Nies (see note below)

Figure 15: Diagram of a Response message.

The GID field contains the same Group Identifier as in the Request idg, the client field
contains the Source Identifier of the Client id4 that sent the Request, the resnonce field

28

5 PROTOCOL TIMELINE

contains a freshly generated, true-random value N/® := TRNG(64 bit), the values of ctext
and tag fields are the two outputs of the same AEAD function call, which authenticates
the Header, client and ctrnonce fields, using both the reqnonce and resnonce field as
AEAD-nonce Ngeqq. The plaintext is the STK, which is encrypted into the ctext field:

ctext, tag := AEAD(LT K as, Nyead, ad, pt, 16 B)
Nacaa = NG| N
ad = mys|| GID||SID||PTY ||client|| ctrnonce
pt = STKg

The Label m,.., is the constant uint8[12] array:

Myes = (99,98,115,95, 114,101, 115, 112, 111, 110, 115, 101)

being the ASCII encoding of the string cbs_response without null-terminations. The
GID, SID, PTY and id* fields in the concatenated associated data are each encoded into
a uint8. If no GID field is present in the Header, it’s assumed to have the value 0.

The Counter Nonce N&" is not incremented after building the Response message, as it
would happen for other messages transmitted by the Session Server.

5.4 Client processing Response

Upon receiving a Response message, the Client A must validate it. If valid, the obtained
STK is used for Secured Application Data messages.

5.4.1 Response message validation

1. The GID field, if present, must indicate a known Group.
2. The PTY field must indicate a valid type (in this case RES).

3. The SID field must be 0 (being the Session Server), thus id® = 0. Otherwise, the
CBS implementation must provide a SOM-warning to the application.

4. The RES-Payload must have length > 44 B (sizes of client + ctrnonce + resnonce
+ ctext + tag fields). Longer Payloads are allowed because additional bytes may be
used by future CBS versions.

5. The client field must be equal to the identity of the Client validating the mes-
sage. This check effectively makes Clients, that are currently expecting a Response,
discard Responses aimed at other Clients.

29

5 PROTOCOL TIMELINE

6.

10.

The Client must be expecting a Response for the Group . This can be verified by
checking that the Request Nonce kept in the Client’s memory for the Group G is
non Zzero:

NET£0

Otherwise, the CBS implementation must provide a NER-warning to the applica-
tion. This check effectively makes Clients discard Responses when they were not
expecting any.

The Response must be received within a pre-configured timeout t,¢qres from the
saved timestamp rg. This can be verified by checking that the inequality holds:

timedelta(rg, currenttime()) < freqres

Otherwise, the CBS implementation must provide a RTO-warning to the applica-
tion.

. The received Counter Nonce must be smaller than its maximum value, according to

its data type:
ctrnonce < maxuint24 = 2% — 1 = 0xFFFFFF

where the ctrnonce is the field of the received message. Otherwise, the CBS imple-
mentation must provide a RON-warning to the application.

. The tag must be valid. Otherwise, the CBS implementation must provide a INV-

warning to the application. This check effectively makes Clients discard Responses
that are spoofed, not intact or not constructed using the N5, which indicates they
are not a Response to the transmitted Request.

The ST K¢, decrypted from ctext, must be non-zero. Otherwise, the CBS imple-
mentation must provide a RZK-warning to the application.

In case any of these checks fails, the message is discarded and the warning, if any, is

provided to the application. Otherwise, in case of a valid Response, the Client:

1.

30

Sets the Request Nonce variable to zero, to indicate that no Response is currently
expected and saves the instant of reception of the Response. The same timestamp
is also used to initialise the mg value, i.e. the timestamp of the last valid message
received, used then to compute the Counter Nonce validity delay with the ctrdelay
function:

N9 =0
rg = currenttime()

mg =—=rag

Sets the short term key ST K and Counter Nonce N&" to the ones decrypted /taken
from the Response message. The Counter Nonce value is just copied, not incre-
mented, as it represents the next Counter Nonce that should appear on the bus.

5 PROTOCOL TIMELINE

The Client is now fully enabled to transmit Secured Application Data messages within
the Group G.

5.4.2 Waiting for a Response

While waiting for a Response or the timeout #,¢4res, 10 new Request must be transmitted
for the same Group; multiple concurrent Requests for different Groups are allowed. A
local non-zero Request Nonce N7 # 0 variable indicates that a Response is currently
expected for the group G. After said timeout and no valid Response received, a new
Request may be transmitted, but the decision whether to do so is left to the application.
Some example decisions are: immediately retry with a new Request up to n tries; wait
first for some time and then retry with a new Request; fallback to Unsecured Application
Data messages; issue a warning to a human operator; fallback to a custom solution; a
combination of the previous points.

5.5 Application Data transmission
The CBS protocol offers 3 variants of messages for transferring application data:

o Unsecured, where there data is in plaintext without any protection.

Unsecured Application Data messages may be transmitted at any point in time by
any Party. This includes the Session Server and all Clients across every Group,
even before the first Request is transmitted or while waiting for a Response. This
is possible because the Unsecured version is not dependent on Counter Nonces or
STKs. Unsecured Application Data messages are useful:

as a fallback mechanism in case the Session Server is offline,

— if support to legacy systems is required,

for benchmarking or debugging purposes during the system development,

— to transport data which is already secured by the application itself without
additional cryptographic overhead,

— to enable communication between Parties that don’t have any Groups in com-

1’1101’110.

o Secured over CAN FD, where the data is encrypted, authenticated and fresh but
also limited in size, as the message is optimised to fit within one CAN FD frame.

 Secured over Transport Protocol (TP), where the data is encrypted, authenticated,
fresh and with larger Payloads, as the message is ready to be transferred over any

10This is only recommended to reduce the size of the configuration data structure of each Part if and
only if the transferred data is already secured by the application. Otherwise a common Group should be
added to the configuration of the communicating Parties and Secured Application Data messages should
be used instead.

31

5 PROTOCOL TIMELINE

transport layer on top of CAN or CAN FD that handles fragmentation and reassem-
bly of long messages. Because many transport protocols exists, the examples in this
document will take ISO-TP [6] as a reference.

Any Party, including the Session Server, is allowed to transmit Application Data messages.

The transmission of Secured Application Data messages is allowed at any point in time,
when the transmitting Party has the Session information to do so, but it is discouraged in
situations where all other Parties on the bus lack said Session information, thus making
any receivers unable to validate and decrypt the message properly. This is namely the
case for the Session Server when it just generated a new STK (on initialisation or Session
renewal) but has not yet distributed said STK to not even one Client.

5.5.1 Incrementing Counter Nonces

The Counter Nonce N&" is used by all Parties (all Clients and the Session Server) in all
Secured Application Data messages to prove the freshness of the message.

After building but before attempting transmission any Secured Application Data message,
the local variable N&" is incremented by 1, so that any following new message is built with
anew nonce. It is critical that the increment happens before transmission and regardless of
transmission success, to avoid any potential issues where the transmission routine reports
an error and but the message is actually transmitted or vice-versa. By incrementing before
transmitting, no Counter Nonce is transmitted twice. Counter Nonces are further updated
upon receiving a valid Secured Application Data message, as indicated in Section 5.6.2.

Before the Counter Nonce reaches the upper limit of its variable’s data type:
max uint24 = 2** — 1 = OxFFFFFF

the Session Server will renew the Session and reset the Counter Nonce. In any case, the
Client must never reuse the same Counter Nonce twice with the same STK. In practice,
this means that once the variable reaches its upper limit, Secured Application Data mes-
sages must not be transmitted any more, the Counter Nonce is not incremented any more
and the Client should transmit a new Request message to obtain the current Session in-
formation again, just to be sure there are no synchronisation issues between the Client
and the Session Server.

5.5.2 Unsecured Application Data message format
The fields of the message are defined in Figure 16, including their data types, names and
values.

The max plaintext length varies depending on where the CBS Header fields are physically
located and whether the message is carried over CAN FD or a transport layer. For
CAN FD the maximum varies within:

32

5 PROTOCOL TIMELINE

UAD-Header UAD-Payload
GID | SID | PTY || uint8[*] plaintext
ide | id* | UAD Arbitrary bytes

Figure 16: Diagram of an Unsecured Application Data message

e 61 B: when the largest Header HO is placed completely in the CAN FD payload;

e 64 B: when the whole Header is encoded in the CAN ID.

In case the message navigates over a transport layer, the max plaintext length also varies
depending on the chosen transport protocol. For ISO-TP the maximum varies within:

 (232—4) B: when the largest Header HO is placed completely in the ISO-TP payload;

e (232 —1) B: when the whole Header is encoded in the CAN ID.

5.5.3 Secured Application Data over CAN FD message format

This message is optimised to fit within a CAN FD frame. The fields of the message are
defined in Figure 17, including their data types, names and values.

SADFD-Header
GID | SID PTY
idg | id* | SADFD

SADFD-Payload
uint24 ctrnonce | uint2 rfu | uint6 ptlen | uint8[ctlen] ctext ‘ uint8[8] tag
Ng" 0 0, 52] (see note below)

Figure 17: Diagram of a Secured Application Data over CAN FD message.

The values of ctext and tag fields are the two outputs of the same AEAD function call, which
authenticates the Header and ptlen field, using the ctrnonce field to build the AEAD-nonce
Ngeaq- The plaintext is arbitrary data from the application, which is encrypted into the
ctext field:

ctext, tag := AEAD(ST K¢, Naead, ad, pt,8 B)
88 bit

—
Nucaqd = N&"||GID||SIDI|0...0
ad = Mgaqra|| GID||SID||PTY ||ptlen
pt = arbitrary ptlen bytes

The Label mgqq4¢4 is the constant uint8[14] array:

33

5 PROTOCOL TIMELINE

Msadra = (99,98, 115,95,115,101,99,117, 114,101, 100, 95, 102, 100)

being the ASCII encoding of the string cbs_secured_fd without null-terminations. The
GID, SID and PTY fields in the concatenated associated data are each encoded into a
uint8. If no GID field is present in the Header, it’s assumed to have the value 0.

ctlen represents the ciphertext length in bytes, while ptlen contains the plaintext length
in bytes. They are equal for Ascon128'!. The max ctlen varies depending on where the
Header fields are physically located and is between:

e 49 B: when the largest Header HO is placed completely in the CAN FD payload!?;

¢ 52 B: when the whole Header is encoded in the CAN ID.

The rfu field (Reserved for Future Usage) is unused and its bits are set to 0.

5.5.4 Secured Application Data over Transport Protocol message format

This message is optimised to carry large secured payloads, because the whole message is
meant to be fragmented and reassembled by a transport layer existing between the CBS
layer and the data-link layer (CAN or CAN FD). Two differences to notice compared to
the Secure Application Data over CAN FD: a larger ptlen field for larger Payloads and
a larger tag field for increased security, as more space is now available. The fields of the
message are defined in Figure 18, including their data types, names and values.

SADTP-Header
GID | SID | PTY
idg | id* | SADTP

SADTP-Payload
uint24 ctrnonce | uint32 ptlen | uint8[ctlen] ctext ‘ uint8[16] tag
Ngr 0,232 — 26] (see note below)

Figure 18: Diagram of a Secured Application Data over Transport Protocol message.

The values of ctext and tag fields are the two outputs of the same AEAD function call,
which authenticates the Header and ptlen field, using the ctrnonce field to build the
AEAD-nonce. The plaintext is arbitrary data from the application, which is encrypted
into the ctext field:

UTf a different cipher is chosen as per Appendix A, then ctlen > ptlen due to padding, e.g. for block
ciphers, but it’s easy for the receiving Party to reconstruct ctlen from ptlen.

12This is a design choice to enable a SADFD message with the worst overhead from the CBS Header
to still carry 3 blocks of a 128 bit block cipher (48 B in total) such as AES-128, in case a different AEAD
implementation is chosen as per Appendix A.

34

5 PROTOCOL TIMELINE

ctext, tag := AEAD(ST K¢, Nueaa, ad, pt, 16 B)
88 bit

—
Nucag = N&"||GID||SID||0...0
ad = Mgqarp|| GID||SID||PTY || ptlen
pt = arbitrary ptlen bytes

The Label mgqq1, is the constant uint8[14] array:

Msaaty = (99,98, 115,95,115,101, 99,117,114, 101, 100, 95, 116, 112)

being the ASCII encoding of the string cbs_secured_tp without null-terminations. The
GID, SID and PTY fields in the concatenated associated data are each encoded into a
uint8. If no GID field is present in the Header, it’s assumed to have the value 0.

ctlen represents the ciphertext length in bytes, while ptlen contains the plaintext length
in bytes. They are equal for Asconl128'®. The max message size is depending on the
chosen transport layer. The max ctlen varies depending on where the Header fields are
physically located; this maximum for ISO-TP varies between:

o (232-26) B: when the largest Header HO is placed completely in the ISO-TP payload;

« (2% —29) B: when the whole Header is encoded in the CAN ID.

5.6 Application Data reception

Upon receiving any Application Data message, the receiving Party B must validate it,
based on its message type.

5.6.1 Unsecured Application Data validation

1. The GID field, if present, should indicate a known Group, but this is not a require-
ment, as UAD messages may be exchanged between Parties that don’t have any
Groups in common. The receiving Party may decide freely whether to enforce this
rule or not.

2. The PTY field must indicate a valid type (in this case UAD).

3. The SID field must be different than the validating Party’s Source Identifier id”.
Otherwise, the CBS implementation must provide a MFM-warning to the applica-
tion.

I3If a different cipher is chosen as per Appendix A, then ctlen > ptlen due to padding, e.g. for block
ciphers, but it’s easy for the receiving Party to reconstruct ctlen from ptlen.

35

5 PROTOCOL TIMELINE

In case any of these checks fails, the message is discarded and the warning, if any, is

provided to the application. Otherwise the plaintext is passed as-is to the application.

5.6.2 Secured Application Data validation

These checks are valid for both Secured Application Data messages over CAN FD and

Transport Protocol.

36

. The GID field, if present, must indicate a known Group.
. The PTY field must indicate a valid type (in this case SADFD or SADTP).

. The SID field must be different than the validating Party’s Source Identifier id?.

Otherwise, the CBS implementation must provide a MFM-warning to the applica-
tion.

. The SADFD-Payload must have length > 12 + ptlen B (sizes of ctrnonce + rfu +

ptlen + tag fields plus the value of the ptlen field), while the SADTP-Payload must
have length > 23 + ptlen B. Longer Payloads are allowed because the additional
bytes may be used by future CBS versions.

. The ptlen field must have a value in the allowed ranges (respectively for SADFD-

and SADTP-Payloads), depending on where the Header fields are physically located.
This is mostly a standard memory safety check to avoiding reading more data than
the underlying CAN FD or Transport Protocol could carry.

. The validating Party must have a non-zero ST K¢, thus be enabled to validate and

decrypt the message.

. The received Counter Nonce must be smaller than its maximum value, according to

its data type:
ctrnonce < maxuint24 = 224 — 1 = 0xFFFFFF

where the ctrnonce is the field of the received message.

. The validating Party’s local variable of the Counter Nonce must be smaller than its

maximum value, according to its data type:
NE" < maxuint24 = 2** — 1 = 0xFFFFFF

In other words, once the Counter Nonce reaches the maximum, every secured mes-
sage is discarded. The Session should anyway be renewed way before such limit
from the Session Server.

. The received Counter Nonce must be fresh. This means that the following expression

must be true:

ctr

ctrnonce > N — ctrdelay(mg, currenttime(), S, DE)

5 PROTOCOL TIMELINE

where the ctrnonce is the field of the received message, N&" is the local Counter
Nonce variable of the validating Party, Sg&e*, DE" are taken from the validating
Party’s configuration and mg from its current state. Otherwise, the CBS imple-
mentation must provide a OLD-warning to the application. This check effectively
drops the messages that are not fresh.

10. The tag must be valid. Otherwise, the CBS implementation must provide a INV-
warning to the application.

In case any of these checks fails'*, the message is discarded!® and the warning, if any, is
provided to the application. Otherwise the receiving Party:

1. Saves the timestamp of the received valid message. On the Session Server:

. sq+1 if currenttime() = s¢
mq = currenttime()
currenttime() otherwise

This ensures mg # s for the Session Server, just like in Section 5.3. On the Clients:

mg = currenttime()

2. Increments the local Counter Nonce variable considering the largest between the
received and the local variable:

NE" = mazx{Ng", ctrnonce} + 1

t16

3. Passes the decrypted plaintext'® without any padding to the application.

5.6.3 Counter Nonce synchronisation and acceptance

Secured Application Data messages carry the Counter Nonce value the transmitting party
has. The Counter Nonce is used as proof of freshness of the message: it is incremented
at every transmitted and received Secured Application Data and Session Renewal Notifi-
cation message, effectively keeping all Parties within the same Group in sync about the
value of such nonce. There are a few corner cases that prevent the ideal syncing of the
value:

4When over a TP, all checks except for the tag validity can be performed after the reception of only a
few fragments (maybe even after just the first, depending on the transport protocol). In case of invalidity,
the remaining incoming fragments may be discarded immediately and, assuming the transport protocol
supports it, the sender may be notified to stop the transmission of subsequent fragments to reduce the
bus load.

15Tf many Secured Application Data messages from the same Group are being discarded, the application
may decide to request the current STK and Counter Nonce to the Session Server again, just to avoid
possible synchronisation issues.

16When over a TP, to avoid large memory buffers, the implementation may also opt to pass the plaintext
fragment-by-fragment to the application as they are being received with the notice that the tag validation
is deferred until the reception of the very last fragment.

37

5 PROTOCOL TIMELINE

o A Party may be busy performing intensive tasks and transmitting messages with-
out inspecting the reception message queue, where messages with newer (greater)
Counter Nonces can be found.

o A Party’s transmission loses the CAN arbitration in case of message collision. The
CAN peripheral transmits the message in the first available slot after the winning
message. Assuming the winning and losing message had the same Counter Nonce
value, the second (losing) carries an already old value; a duplicate of the winning
when it should be greater by 1.

To avoid messages being lost, not just the latest Counter Nonce is accepted, but also a
few older ones, specifically any value such that:

> N&" — ctrdelay(mg, currenttime(), S, DE®)

where N&" is the local Counter Nonce variable of the validating Party, Sge*, DZ* are
taken from the validating Party’s configuration and mg from its current state. The Party-
local variable N&" represents the Counter Nonce expected to appear in the next received
Secured Application Data or Session Renewal Notification message, while ctrdelay rep-

resents the tolerance for older Counter Nonces.

A large of ctrdelay leads to a more messages being accepted but leaving a large replay
window for an attacker. A small one may lead to some messages to be discarded as too old
in case oh high congestion of the bus. This is also affected by Dge*, S**. In particular
configuring!” D% = () reduces the acceptance interval to just the next expected Counter

Nonce and would not accept a message that loses the arbitration from the example above.

The Figure 19 shows how the result of the ctrdelay function changes over time as new
valid messages are received.

5.7 Server renewing session

A Session and thus its STK expire in time and in amount uses, i.e. total amount of
messages sent with the same STK, whichever comes first. The expiration and following
renewal of a Session are handled solely by the Session Server. During the Session renewal
phase, a new STK is generated and distributed, but the old STK is kept available for a bit
longer, to allow any pending messages secured with the old STK to be still accepted.

5.7.1 Expiration criteria

1. The Session expires when the Counter Nonce reaches the preconfigured upper limit
NG™®:
N > g

1"The implementation may also decide to alter Dger SEe® dynamically at runtime based on the
current bus load.

38

5 PROTOCOL TIMELINE

Old ctrnonce
S rejected

ctrdelay(m,t, S, D) : W ‘

. L

t
I
RES SADFD SADFD

Figure 19: Plot of how the result of the ctrdelay function changes over time as new
valid messages are received, indicated on the X-axis, which refresh the value of m to that
instant. In this example D = 4 and S is a fixed positive constant.

2. The Session expires when more than s;” time has passed since the Session start sq:

timedelta(sg, currenttime()) > si?

Note that different Groups may have different validity periods (different N&7 or sg®).

5.7.2 Server-side Session renewal phase

During this phase the Session Server starts a new Session just like during the initialisation
from Section 5.1, while temporarily keeping also the information of the old Session active.
Let G be the generic Group that had just expired.

1. The Session Server copies the expired STK, Counter Nonce and Message Timer into
temporary variables:

STKZ = STK¢q

ctr,old . ctr
Ng = N¢
old .__
meag = Mg

2. Then it takes the same steps as during the initialisation phase to create a new
Session:

ST K¢ = TRNG(128 bit) # 0

S¢ = currenttime()

mg ‘= Sg
NE™ =0

trold . . s
From now on, STKZ? N5 are not delivered to Clients within Response messages

any more, ST K¢g, N&" are given instead.

39

5 PROTOCOL TIMELINE

Session Server Alice Bob

Server renewal
phase

Clients renewal
phase

B N e R Y M

AATTAUIAUNANNNNNNNNNNNNNNNNY
N e

R T I T I AT I T AN I NI AN N S A N AN N AN S AN S AN SN SN SN SN« o s
N N N
N e N N N N NN
N N N N N N NN Y
I N N N N N NN NN

Figure 20: Timeline of the Session renewal phases on the Session Server and on the Clients.
In this example Alice and Bob react on the first REN message to request the new Session
information. The patterned areas with diagonal lines going from top-left to bottom-right
(\\\) indicate the time interval when the Party is still able to use STKZ?, while the
top-right to bottom-left diagonal pattern (///) indicates when the Party possesses the
new ST Kq. Not to scale.

3. The Session Server has to transmit 3 distinct Session Renewal Notification messages,
as defined in Section 5.7.3, each built anew just before transmission, with a time
delay of tgtf between each transmission.

4. While the Session Renewal Notifications are being transmitted and until the Session

8 received messages using STKZ? are still processed and

renewal phase is over!
accepted, if valid. They could be easily distinguished from the messages using the

new STK, because the ones with the old STK have large Counter Nonces ~ N&"*,

18The implementation can easily verify if the Session renewal phase is still ongoing by checking whether
STKgld # 0 holds, as STKg;ld is cleared during the Session renewal phase termination.

40

5 PROTOCOL TIMELINE

while the new ones are closer to 0. In particular if:

\‘Ngr + Nétr,oldJ

ctrnonce > 5

then the message uses STKZ? The NG m@? are also updated for each received

Secured Application Data message that uses STKZ?

(see Section 5.6.2).

, just like they usually would

. Just like after the Server initialisation (see Section 5.1), as long as mg = s¢ for
a Group G, no Client in that Group has yet obtained the new ST Kg, N&" values
enabling it to validate and decrypt a Secured Application Data message. This should
discourage the Session Server to transmit such messages within the Group, as no
Client would be able to process them successfully.

. The Server-side Session renewal phase terminates when at least one of the following
conditions is satisfied:

o when enough Secured Application Data messages that use the new ST K have
been received or transmitted by the Session Server. The threshold is twice the
Counter Validity Delay:

NE" > 2 Dgr

« when enough time has passed since the start of the new Session. The threshold
is six times the delay between Session Renewal Notifications since the Session
start:

timedelta(sg, currenttime()) > 6¢n'

At termination of the Server-side Session renewal phase, the Session Server erases the

old STK, Counter Nonce and Message Timer and thus cannot accept old messages

any more:
STKZ =0
Ngr,old — 0
mOGld =0

5.7.3 Session Renewal Notification message format

The fields of the message are defined in Figure 21, including their data types, names and
values.

REN-Header REN-Payload
GID SID PTY | uint24 ctrnonce | uint8[16] tag
idg | id® =0 | REN NEror (see note below)

Figure 21: Diagram of a Session Renewal Notification message

41

5 PROTOCOL TIMELINE

The value of the tag field is the keyed (with the old STK), labelled hash of the Header
and ctrnonce fields:

tag = Hash(ST K% |myen|| GID||SID|| PTY || ctrnonce, 16 B)

The Label my., is the constant uint8[11] array:

Myen = (99,98,115,95,114, 101,110, 101, 119, 97, 108)

being the ASCII encoding of the string cbs_renewal without null-terminations. The
GID, SID and PTY fields in the concatenated hashing input are each encoded into a
uint8. If no GID field is present in the Header, it’s assumed to have the value 0.

5.8 Client processing Session Renewal Notification

The Client on its own is not aware of the Session’s expiration, so it gets notified by the
Session Server with a Session Renewal Notification message. If the message is valid, the
Client then reacts by transmitting a Request and expecting a Response to get the new
STK.

5.8.1 Session Renewal Notification validation

1. The GID field, if present, must indicate a known Group.
2. The PTY field must indicate a valid type (in this case REN).

3. The SID field must be 0 (being the Session Server), thus id® = 0. Otherwise, the
CBS implementation must provide a SOM-warning to the application.

4. The REN-Payload must have length > 19 B (sizes of ctrnonce + tag fields). Longer
Payloads are allowed because additional bytes may be used by future CBS versions.

5. The validating Client must have a non-zero ST K, thus be enabled to validate and
decrypt the message.

6. The validating Client must be in the proper state to accept Session Renewal Noti-
fications, i.e. when it’s not in the Client-Side Session renewal phase and when it’s
not currently waiting for a Response to a previously transmitted Request message:

STKZ* =0 A NZ7 =0
This check effectively drops repeated Session Renewal Notifications.

42

5 PROTOCOL TIMELINE

7. The received Counter Nonce must be smaller than its maximum value, according to
its data type:

ctrnonce < maxuint24 = 22* — 1 = 0xFFFFFF

where the ctrnonce is the field of the received message. Otherwise, the CBS imple-
mentation must provide a RON-warning to the application.

8. The validating Client’s local variable of the Counter Nonce must be smaller than
its maximum value, according to its data type:

N§" < maxuint24 = 2** — 1 = 0xFFFFFF

In other words, once the Counter Nonce reaches the maximum, every secured mes-
sage is discarded. The Session should anyway be renewed way before such limit
from the Session Server.

9. The received Counter Nonce must be fresh. This means that the following expression
must be true:

ctrnonce > N&" — ctrdelay(mg, currenttime(), Sp®, DE")

where the ctrnonce is the field of the received message, N&" is the local Counter

Nonce variable of the validating Client, S, D@ are taken from the validating
Client’s configuration and m¢ from its current state. Otherwise, the CBS imple-
mentation must provide a OLD-warning to the application. This check effectively
drops the messages that are not fresh.

10. The tag must be valid (when evaluated with ST K¢, not STKZ?). Otherwise, the
CBS implementation must provide a INV-warning to the application.

In case any of these checks fails, the message is discarded and the warning, if any, is
provided to the application. Otherwise the receiving Client:

1. Saves the timestamp of the received valid message:

me = currenttime()

2. Increments the local Counter Nonces variable considering the largest between the
received and the local variable:

NE™ = max{N§", ctrnonce} + 1

3. Enters the Client-side Session renewal phase as per next Section.

43

5 PROTOCOL TIMELINE

5.8.2 Client-side Session renewal phase

1.

Just like during the Client initialisation, the Client must transmit a Request and
wait for a Response.

. While waiting for a Response, the (current for the Client, old for the Server) STK

and Counter Nonce are still in the variables of the current session ST K¢, N&™ and
can still be used both for reception and transmission of Secure Application Data
messages.

Until a Response is received and until the end of the Client-side Session renewal
phase, further Session Renewal Notifications are ignored, to avoid triggering multiple
Request transmissions in a row from the same Client. This is handled by the check
at Point 6 in Section 5.8.1.

. Upon receiving a valid Response, similarly to the Session Server, the Client copies

the old STK, Counter Nonce and Message Timer into temporary variables, to keep
available a bit longer to handle pending messages:

STKZ" := STKg
ctr,old ctr
NG = Ng

mOGld =Mmgqg

Then the just-received, new Counter Nonce and STK are saved into ST Kg and N&",
while the Request and Message Timers are updated, all as per a regular reception
of a Response message, as indicated in Section 5.4.

19 old

Until the Client-side Session renewal phase is over”, received messages using ST K&

are still processed and accepted, if valid. They could be easily distinguished from

the messages using the new STK, because the ones with the old STK have large

thr,old

Counter Nonces ~ N ", while the new ones are closer to 0. In particular if:

thr +th7“,old
ctrnonce > {GQG

then the message uses STKZ? The NG m@? are also updated for each received

old

message that uses STKZ®, just like they usually would (see Section 5.6.2).

. The Client-side Session renewal phase terminates when at least one of the following

conditions is satisfied:

o when enough Secured Application Data messages that use the new ST Kg have
been received or transmitted by the Client. The threshold is twice the Max
Counter Validity Delay:

N&" > 2Dgr

19The implementation can easily verify if the Session renewal phase is still ongoing by checking whether
STKgld # 0 holds, as STKg;ld is cleared during the Session renewal phase termination.

44

5 PROTOCOL TIMELINE

o when enough time has passed since the reception of a valid Response:

timedelta(rq, currenttime()) > ti"

At termination of the Client-side Session renewal phase, the Client erases the old
STK, Counter Nonce and Message Timer and thus cannot accept old messages any

more:
STKZ =0
N(c;tr,old — 0
mgd =0

If no Response is received, the same behaviour as during the Client initialisation phase in
case of a missing Response can be applied (see Section 5.4.2).

45

6 CHECKS AGAINST REPLAYS, SPOOFS AND DOS ATTACKS

6 Checks against replays, spoofs and DoS attacks

Because the Parties communicate over a bus, every Party is able to receive messages from
anyone else, including active attackers transmitting replayed and spoofed messages. In
this section a few countermeasures are listed.

6.1 Server processing messages only the Server may transmit

Upon receiving a Response or Session Renewal Notification message (which only the
Session Server itself may transmit), regardless if they are valid or not, the Session Server
must notify the application about it with a MFM-warning, even if the message is addressed
as coming from any Client instead of the Session Server. No further processing on the
message is performed and it can be discarded. The Session Server must not filter out
these messages, i.e. it must always be able to receive them to perform this check.

6.2 Client processing Requests

For performance reasons, Clients may be configured to drop received Request messages
a priori without validating them, as they are anyway destined to the Session Server and
not to other Clients. For higher security, a Client A can optionally validate any received
Request message as follows to detect spoofing and replay attacks. Note that in the case
when the Client is in a non-receiving low-power mode, such check cannot be performed.

6.2.1 Request message validation

1. The PTY field must indicate a valid type (in this case REQ).

2. The SID field must be different than the validating Party’s Source Identifier id”.
Otherwise, the CBS implementation must provide a MFM-warning to the applica-
tion.

In any case, the Request message is discarded at the end of the validation and the warning,
if any, is provided to the application. Note that there is no check of the GID field as the
validating Party generally does not know all the Groups other Parties belong to.

6.3 A note on Denial of Service (DoS) attacks

The Request message contains no proof of timeliness, thus it can be replayed and the
Session Server would simply create and transmit Responses to them. Clients reject unex-
pected Responses, so there is no actual impact on the states of any Parties. On the other
hand, such mechanism could be an attack vector for a Denial of Service (DoS) attack

46

6 CHECKS AGAINST REPLAYS, SPOOFS AND DOS ATTACKS

towards the Session Server, forcing it into performing cryptographic computations and
keeping its processing load high. The choice not to include timeliness information into
Request messages is for performance reasons, as this would require more messages and
thus increased latency for the Session Server to distribute the Session information to the
Clients.

The protocol is defined under the assumption that DoS attacks are not performed on
the CBS layer, as it would be much easier for an attacker to perform them on lower
layers. To block the CAN bus completely, it is sufficient to constantly transmit a stream
of dominant values (logical zeros) or to actively invalidate all the frames sent by others.

Nevertheless the protocol includes minimal and optional protection against DoS attacks
on the CBS layer with Clients checking for spoofed/replayed Requests (see Section 6.2).

The implementation of CBS may also contain additional custom countermeasures against
such DoS attacks, for example by preventing the Session Server to respond to many suc-
cessive Requests from the same Party or by still responding but notifying the application
with DOS-warnings that an anomalous and potentially nefarious activity was detected.

47

7 LOW-POWER MODES OF THE PARTIES

7 Low-power modes of the Parties

7.1 Client low-power mode

Some Clients may not be active 100% of the time and may deactivate some peripherals
(including the CAN transceiver) while waiting for some interrupts in order to spare power,
which could make them lose messages that appeared on the bus in the meantime.

Before entering a non-receiving low-power mode, the Client must invalidate its Session
information?® for all Groups:

STK¢g = STKZ" = 0,YG
NgT — ét'/‘,old — O,\V/G
NG = 0,YG

Once the Client awakes again, it must transmit a Request and wait for a Response for
each Group of interest, just like during the Client initialisation phase (see Section 5.2.1).
This is a requirement to either get a new STK and current Counter Nonce, if the Session
was renewed while the Client was in low-power mode, or at the very least to get the
current Counter Nonce from a trusted source (the Server), in case the Session is still the
same.

While waiting for a Response, no Secure Application Data message must be transmitted
or received. This is effectively prevented by the check 6 of Section 5.6.2, given that the
local STK variables are cleared.

Rationale: The transmission of Secured Application Data messages after the awaken-
ing, but before getting the up-to-date Session information, would most probably force the
receiving Parties to reject them because their old Counter Nonce or even old STK. Re-
ceiving any Secured Application Data messages during the same time-frame, on the other
hand, opens a window for replay attacks: any message that appeared in the time-frame
between the entering and exiting of the low-power mode could be replayed and accepted
by the just-awakened Client, as it would contain a Counter Nonce that is still newer than
what the Client had since before the low-power phase.

7.1.1 Client caching Request before low-power

Just before entering a low-power mode, a Client may generate a new Request Nonce and
Request message for each desired Group as per Section 5.2.1, except the messages are not

20Because this makes the other Client variables (see Section 3.2) unusable, as the various checks would
anyhow prevent the transmission or reception of Secured Application Data messages, the implementation
may decide to simply zero-out all the variables for all of the Groups, effectively clearing the state as if
the Client had just booted up for the first time.

48

7 LOW-POWER MODES OF THE PARTIES

Session Server Alice

Low power mode

Figure 22: Timeline of the Alice entering a low-power mode (white dot), awaking again
(black dot) and requesting the current Session information to the Session Server. The
diagonal-patterned area indicates the time interval when the Party possesses the up-to-
date ST K¢, N&" and is thus able to communicate securely with others. Not to scale.

sent, but cached in a buffer. Once the Client awakes again, the Requests that is supposed
to transmit are the cached ones, already prepared and can be directly transmitted. The
Client must only take care to store the current timestamps for each Group before the
transmission instead of storing them at message construction:

rg = currenttime()

This behaviour is optional and may have a performance advantage, to let the Client obtain
the Responses and get up-to-speed with the rest of the Groups faster, as it does not have
to generate the Request messages after awaking.

7.2 Session Server low-power mode

The Session Server is allowed to go only into such low-power modes that guarantee no
message on the bus being lost. For example, deactivating non-CAN related peripherals is
thus allowed, as long as any message over CAN activates again all the required components
to process said message in time.

49

REFERENCES

References

1]

20

Roger M. Needham and Michael D. Schroeder. “Using Encryption for Authentication
in Large Networks of Computers”. In: Commun. ACM 21.12 (1978-12), pp. 993-999.
1SSN: 0001-0782. por: 10.1145/359657 .359659. URL: https://doi.org/10.1145/
359657 .359659.

Roger M. Needham and Michael D. Schroeder. “Authentication Revisited”. In:
SIGOPS Oper. Syst. Rev. 21.1 (1987-01), p. 7. 1sSN: 0163-5980. DOI: 10 . 1145/
24592.24593. URL: https://doi.org/10.1145/24592.24593.

Stefan Niirnberger and Christian Rossow. “— vatiCAN — Vetted, Authenticated CAN
Bus”. In: vol. 9813. 2016-08, pp. 106-124. 1SBN: 978-3-662-53139-6. DOI: 10.1007/
978-3-662-53140-2_6.

Alice and Bob notation. URL: https://en.wikipedia.org/wiki/Alice_and_Bob
(visited on 2020-07-14).

Christoph Dobraunig et al. Ascon v1.2. 2019. URL: https://ascon.iaik. tugraz.
at/files/asconvi2-nist.pdf.

ISO 15765-2:2016, Road vehicles — Diagnostic communication over Controller Area
Network (DoCAN) — Part 2: Transport protocol and network layer services. Standard.
Geneva, CH: International Organization for Standardization, 2016-04. URL: https:
//www.iso.org/standard/66574.html.

https://doi.org/10.1145/359657.359659

https://doi.org/10.1145/359657.359659

https://doi.org/10.1145/359657.359659

https://doi.org/10.1145/24592.24593

https://doi.org/10.1145/24592.24593

https://doi.org/10.1145/24592.24593

https://doi.org/10.1007/978-3-662-53140-2_6

https://doi.org/10.1007/978-3-662-53140-2_6

https://en.wikipedia.org/wiki/Alice_and_Bob

https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf

https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf

https://www.iso.org/standard/66574.html

https://www.iso.org/standard/66574.html

A ALTERNATIVE AEAD CIPHERS AND HASH FUNCTIONS

Appendices

A Alternative AEAD ciphers and hash functions

The protocol user may prefer using an alternative definition of the AEAD or Hash func-
tion rather than Ascon128 and Ascon-XOF, for example because a cryptographic library
with AES-GCM and HMAC-SHA256 is already available on the used platform, possibly
including hardware support, or LTKs with more than 128 bits are a system requirement.

This is possible, provided that every Party within the same Group uses the alternative
AEAD/Hash and that the cryptographic properties described in Sections 2.10.1 and 2.10.2
are still valid. Additionally:

« In case some fields would require padding (e.g. the plaintext or the AEAD-nonces to
fit a block cipher), it should be a padding with zeros added on the most-significant
side?! of the value, i.e. the value does not change if interpreted as an integer.
For example, assuming the AEAD-nonce as used in the Response message (see
Section 5.3.2) needs to be 160 bit instead of 128:

128 bit 32 bit
req e lh

« In case the required tag or digest is shorter than the actual output of the AEAD/Hash
function, the latter should be truncated and only the first bytes (those with smaller
indices in the array of bytes) should be considered.

e In case the LTK must be longer than 128 bits, the AEAD function must be changed
to an implementation supporting such key length. The STK size is fixed at 128 bits
to avoid changing the format and size of the Response message.

o The Hash function must be resistant to length-extension attacks; otherwise the used
keyed hash scheme (prepending the key to the hashed message) can be exploited.

21Considering that little Endian is the encoding choice (see Section 2.7), this means a right-side zero-
padding of the encoded values.

o1

B RECONFIGURING LONG TERM KEYS

B Reconfiguring Long Term Keys

In case a Client needs to be reconfigured (e.g. the hosting device is replaced or a config-
uration reset is required), a new?? LT K 45 must be generated by an external third party,
like a human operator, and installed on both the Client and the Session Server. In case
the Session Server needs to be reconfigured, the same operation must be performed for
each Client-Server pair.

Rationale: The system is designed to allow a simple replacement of the Clients, which
are assumed to be more vulnerable and exposed devices, e.g. peripherals on a vehicle
which could be damaged by a light traffic accident. The Session Server is assumed to be a
more powerful, central, less exposed, controlling device, e.g. the body control module of a
vehicle. The assumption is that the replacement of such a central device requires anyhow
a reconfiguration of many subsystems on the bus, so reconfiguring also the cryptographic
keys should not be an issue.

22The assumption here is that the old LT K 45 cannot be read out from one of the two Parties holding
it as it’s kept in a secure subsystem or module. In any case, it’s good security practice to avoid reusing
the same keys after a reconfiguration.

52

		Definition and threat model

		Hardware requirements

		Communication stack

		General definitions

		Notation

		Parties

		Cryptographic keys

		Client and Server

		Groups

		Single vs. multiple Groups

		Session

		Endianness

		Warnings

		Time functions

		Current timestamp

		Time difference

		Current Counter Nonce delay

		Cryptographic functions

		Authenticated encryption with associated data

		Hashing

		Random number generation

		Client and Server states

		Client configuration

		Client state variables

		Server configuration

		Server state variables

		Message Header

		Header Types

		Physical location of CBS Header within the CAN FD frame

		Payload Types

		Protocol timeline

		Server initialisation

		Client initialisation

		Request generation

		Request message format

		Server processing Request

		Request message validation

		Response message format

		Client processing Response

		Response message validation

		Waiting for a Response

		Application Data transmission

		Incrementing Counter Nonces

		Unsecured Application Data message format

		Secured Application Data over CAN FD message format

		Secured Application Data over Transport Protocol message format

		Application Data reception

		Unsecured Application Data validation

		Secured Application Data validation

		Counter Nonce synchronisation and acceptance

		Server renewing session

		Expiration criteria

		Server-side Session renewal phase

		Session Renewal Notification message format

		Client processing Session Renewal Notification

		Session Renewal Notification validation

		Client-side Session renewal phase

		Checks against replays, spoofs and DoS attacks

		Server processing messages only the Server may transmit

		Client processing Requests

		Request message validation

		A note on Denial of Service (DoS) attacks

		Low-power modes of the Parties

		Client low-power mode

		Client caching Request before low-power

		Session Server low-power mode

		Appendices

		Alternative AEAD ciphers and hash functions

		Reconfiguring Long Term Keys

